Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven optimal control via linear programming: boundedness guarantees (2310.19563v1)

Published 30 Oct 2023 in eess.SY and cs.SY

Abstract: The linear programming (LP) approach is, together with value iteration and policy iteration, one of the three fundamental methods to solve optimal control problems in a dynamic programming setting. Despite its simple formulation, versatility, and predisposition to be employed in model-free settings, the LP approach has not enjoyed the same popularity as the other methods. The reason is the often poor scalability of the exact LP approach and the difficulty to obtain bounded solutions for a reasonable amount of constraints. We mitigate these issues here, by investigating fundamental geometric features of the LP and developing sufficient conditions to guarantee finite solutions with minimal constraints. In the model-free context, we show that boundedness can be guaranteed by a suitable choice of dataset and objective function.

Citations (1)

Summary

We haven't generated a summary for this paper yet.