Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangled Counterfactual Learning for Physical Audiovisual Commonsense Reasoning (2310.19559v2)

Published 30 Oct 2023 in cs.CV

Abstract: In this paper, we propose a Disentangled Counterfactual Learning~(DCL) approach for physical audiovisual commonsense reasoning. The task aims to infer objects' physics commonsense based on both video and audio input, with the main challenge is how to imitate the reasoning ability of humans. Most of the current methods fail to take full advantage of different characteristics in multi-modal data, and lacking causal reasoning ability in models impedes the progress of implicit physical knowledge inferring. To address these issues, our proposed DCL method decouples videos into static (time-invariant) and dynamic (time-varying) factors in the latent space by the disentangled sequential encoder, which adopts a variational autoencoder (VAE) to maximize the mutual information with a contrastive loss function. Furthermore, we introduce a counterfactual learning module to augment the model's reasoning ability by modeling physical knowledge relationships among different objects under counterfactual intervention. Our proposed method is a plug-and-play module that can be incorporated into any baseline. In experiments, we show that our proposed method improves baseline methods and achieves state-of-the-art performance. Our source code is available at https://github.com/Andy20178/DCL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Changsheng Lv (10 papers)
  2. Shuai Zhang (319 papers)
  3. Yapeng Tian (80 papers)
  4. Mengshi Qi (32 papers)
  5. Huadong Ma (52 papers)
Citations (5)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub