Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Online Source-free Domain Adaptation for Object Detection by Unsupervised Data Acquisition (2310.19258v3)

Published 30 Oct 2023 in cs.CV

Abstract: Effective object detection in autonomous vehicles is challenged by deployment in diverse and unfamiliar environments. Online Source-Free Domain Adaptation (O-SFDA) offers model adaptation using a stream of unlabeled data from a target domain in an online manner. However, not all captured frames contain information beneficial for adaptation, especially in the presence of redundant data and class imbalance issues. This paper introduces a novel approach to enhance O-SFDA for adaptive object detection through unsupervised data acquisition. Our methodology prioritizes the most informative unlabeled frames for inclusion in the online training process. Empirical evaluation on a real-world dataset reveals that our method outperforms existing state-of-the-art O-SFDA techniques, demonstrating the viability of unsupervised data acquisition for improving the adaptive object detector.

Summary

We haven't generated a summary for this paper yet.