Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Stream to Pool: Pricing Under the Law of Diminishing Marginal Utility (2310.19220v3)

Published 30 Oct 2023 in cs.LG and cs.GT

Abstract: Dynamic pricing models often posit that a $\textbf{stream}$ of customer interactions occur sequentially, where customers' valuations are drawn independently. However, this model is not entirely reflective of the real world, as it overlooks a critical aspect, the law of diminishing marginal utility, which states that a customer's marginal utility from each additional unit declines. This causes the valuation distribution to shift towards the lower end, which is not captured by the stream model. This motivates us to study a pool-based model, where a $\textbf{pool}$ of customers repeatedly interacts with a monopolist seller, each of whose valuation diminishes in the number of purchases made according to a discount function. In particular, when the discount function is constant, our pool model recovers the stream model. We focus on the most fundamental special case, where a customer's valuation becomes zero once a purchase is made. Given $k$ prices, we present a non-adaptive, detail-free (i.e., does not "know" the valuations) policy that achieves a $1/k$ competitive ratio, which is optimal among non-adaptive policies. Furthermore, based on a novel debiasing technique, we propose an adaptive learn-then-earn policy with a $\tilde O(k{2/3} n{2/3})$ regret.

Summary

We haven't generated a summary for this paper yet.