Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Back to the Future! Studying Data Cleanness in Defects4J and its Impact on Fault Localization (2310.19139v3)

Published 29 Oct 2023 in cs.SE

Abstract: For software testing research, Defects4J stands out as the primary benchmark dataset, offering a controlled environment to study real bugs from prominent open-source systems. However, prior research indicates that Defects4J might include tests added post-bug report, embedding developer knowledge and affecting fault localization efficacy. In this paper, we examine Defects4J's fault-triggering tests, emphasizing the implications of developer knowledge of SBFL techniques. We study the timelines of changes made to these tests concerning bug report creation. Then, we study the effectiveness of SBFL techniques without developer knowledge in the tests. We found that 1) 55% of the fault-triggering tests were newly added to replicate the bug or to test for regression; 2) 22% of the fault-triggering tests were modified after the bug reports were created, containing developer knowledge of the bug; 3) developers often modify the tests to include new assertions or change the test code to reflect the changes in the source code; and 4) the performance of SBFL techniques degrades significantly (up to --415% for Mean First Rank) when evaluated on the bugs without developer knowledge. We provide a dataset of bugs without developer insights, aiding future SBFL evaluations in Defects4J and informing considerations for future bug benchmarks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com