Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transport-of-Intensity Model for Single-Mask X-ray Differential Phase Contrast Imaging (2310.19087v2)

Published 29 Oct 2023 in eess.IV, physics.ins-det, physics.med-ph, physics.optics, and q-bio.TO

Abstract: X-ray phase contrast imaging holds great promise for improving the visibility of light-element materials such as soft tissues and tumors. Single-mask differential phase contrastnimaging method stands out as a simple and effective approach to yield differential phase contrast. In this work, we introduce a novel model for a single-mask phase imaging system based on the transport-of-intensity equation. Our model provides an accessible understanding of signal and contrast formation in single-mask X-ray phase imaging, offering a clear perspective on the image formation process, for example, the origin of alternate bright and dark fringes in phase contrast intensity images. Aided by our model, we present an efficient retrieval method that yields differential phase contrast imagery in a single acquisition step. Our model gives insight into the contrast generation and its dependence on the system geometry and imaging parameters in both the initial intensity image as well as in retrieved images. The model validity as well as the proposed retrieval method is demonstrated via both experimental results on a system developed in-house as well as with Monte Carlo simulations. In conclusion, our work not only provides a model for an intuitive visualization of image formation but also offers a method to optimize differential phase imaging setups, holding tremendous promise for advancing medical diagnostics and other applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. R. A. Lewis, “Medical phase contrast x-ray imaging: Current status and future prospects,” \JournalTitlePhys. Med. Biol. 49, 3573 (2004).
  2. R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” \JournalTitlePhysics Today 53, 23–26 (2000).
  3. S. Tao, C. He, X. Hao, C. Kuang, and X. Liu, “Principles of Different X-ray Phase-Contrast Imaging: A Review,” \JournalTitleApplied Sciences 11, 2971 (2021).
  4. S. D. Auweter, J. Herzen, M. Willner, S. Grandl, K. Scherer, F. Bamberg, M. F. Reiser, F. Pfeiffer, and K. Hellerhoff, “X-ray phase-contrast imaging of the breast—advances towards clinical implementation,” \JournalTitleThe British Journal of Radiology 87, 20130606 (2014).
  5. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” \JournalTitleApplied Physics Letters 100, 124102 (2012).
  6. T. Zhou, I. Zanette, M.-C. Zdora, U. Lundström, D. H. Larsson, H. M. Hertz, F. Pfeiffer, and A. Burvall, “Speckle-based x-ray phase-contrast imaging with a laboratory source and the scanning technique,” \JournalTitleOptics Letters 40, 2822–2825 (2015).
  7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” \JournalTitleNature 384, 335–338 (1996).
  8. Y. Suzuki, N. Yagi, and K. Uesugi, “X-ray refraction-enhanced imaging and a method for phase retrieval for a simple object,” \JournalTitleJournal of Synchrotron Radiation 9, 160–165 (2002).
  9. C. Zuo, J. Li, J. Sun, Y. Fan, J. Zhang, L. Lu, R. Zhang, B. Wang, L. Huang, and Q. Chen, “Transport of intensity equation: A tutorial,” \JournalTitleOptics and Lasers in Engineering 135, 106187 (2020).
  10. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” \JournalTitleJournal of Microscopy 206, 33–40 (2002).
  11. F. Krejci, J. Jakubek, and M. Kroupa, “Hard x-ray phase contrast imaging using single absorption grating and hybrid semiconductor pixel detector,” \JournalTitleReview of Scientific Instruments 81, 113702 (2010).
  12. G. K. Kallon, P. C. Diemoz, F. A. Vittoria, D. Basta, M. Endrizzi, and A. Olivo, “Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups,” \JournalTitleAppl. Phys. p. 14 (2017).
  13. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” \JournalTitleApplied Physics Letters 91, 074106 (2007).
  14. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” \JournalTitleApplied Optics 50, 1765–1769 (2011).
  15. F. A. Vittoria, P. C. Diemoz, M. Endrizzi, L. Rigon, F. C. Lopez, D. Dreossi, P. R. T. Munro, and A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” \JournalTitleAppl. Opt., AO 52, 6940–6947 (2013).
  16. D. Gürsoy and M. Das, “Single-step absorption and phase retrieval with polychromatic x rays using a spectral detector,” \JournalTitleOptics Letters 38, 1461 (2013).
  17. M. Das, “Single step X-ray phase imaging,” (US Patent 9237876, 2016).
  18. M. Das, “Single step differential phase contrast x-ray imaging,” (US Patent 9445775, 2016).
  19. I. Vazquez, I. E. Harmon, J. C. R. Luna, and M. Das, “Quantitative phase retrieval with low photon counts using an energy resolving quantum detector,” \JournalTitleJournal of the Optical Society of America A 38, 71 (2021).
  20. M. Das and Z. Liang, “Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging,” \JournalTitleOptics Letters 39, 5395–5398 (2014).
  21. R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. H. M. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The Medipix3RX: A high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging,” \JournalTitleJ. Inst. 8, C02016 (2013).
  22. M. Das, B. Kandel, C. S. Park, and Z. Liang, “Energy calibration of photon counting detectors using x-ray tube potential as a reference for material decomposition applications,” in Medical Imaging 2015: Physics of Medical Imaging, vol. 9412 (SPIE, 2015), pp. 263–268.
  23. S. Vespucci, C. S. Park, R. Torrico, and M. Das, “Robust Energy Calibration Technique for Photon Counting Spectral Detectors,” \JournalTitleIEEE Transactions on Medical Imaging 38, 968–978 (2019).
  24. J. Giersch and J. Durst, “Monte Carlo simulations in X-ray imaging,” \JournalTitleNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 591, 300–305 (2008).
Citations (6)

Summary

We haven't generated a summary for this paper yet.