Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression (2310.19059v1)

Published 29 Oct 2023 in cs.LG, cs.DC, and math.OC

Abstract: We consider the problem of finding second-order stationary points of heterogeneous federated learning (FL). Previous works in FL mostly focus on first-order convergence guarantees, which do not rule out the scenario of unstable saddle points. Meanwhile, it is a key bottleneck of FL to achieve communication efficiency without compensating the learning accuracy, especially when local data are highly heterogeneous across different clients. Given this, we propose a novel algorithm Power-EF that only communicates compressed information via a novel error-feedback scheme. To our knowledge, Power-EF is the first distributed and compressed SGD algorithm that provably escapes saddle points in heterogeneous FL without any data homogeneity assumptions. In particular, Power-EF improves to second-order stationary points after visiting first-order (possibly saddle) points, using additional gradient queries and communication rounds only of almost the same order required by first-order convergence, and the convergence rate exhibits a linear speedup in terms of the number of workers. Our theory improves/recovers previous results, while extending to much more tolerant settings on the local data. Numerical experiments are provided to complement the theory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sijin Chen (12 papers)
  2. Zhize Li (30 papers)
  3. Yuejie Chi (110 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.