Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Nonlinear Model Predictive Control with an Uncertainty Propagation Horizon for Autonomous Vehicle Motion Control (2310.18753v1)

Published 28 Oct 2023 in eess.SY, cs.RO, and cs.SY

Abstract: Employing Stochastic Nonlinear Model Predictive Control (SNMPC) for real-time applications is challenging due to the complex task of propagating uncertainties through nonlinear systems. This difficulty becomes more pronounced in high-dimensional systems with extended prediction horizons, such as autonomous vehicles. To enhance closed-loop performance in and feasibility in SNMPCs, we introduce the concept of the Uncertainty Propagation Horizon (UPH). The UPH limits the time for uncertainty propagation through system dynamics, preventing trajectory divergence, optimizing feedback loop advantages, and reducing computational overhead. Our SNMPC approach utilizes Polynomial Chaos Expansion (PCE) to propagate uncertainties and incorporates nonlinear hard constraints on state expectations and nonlinear probabilistic constraints. We transform the probabilistic constraints into deterministic constraints by estimating the nonlinear constraints' expectation and variance. We then showcase our algorithm's effectiveness in real-time control of a high-dimensional, highly nonlinear system-the trajectory following of an autonomous passenger vehicle, modeled with a dynamic nonlinear single-track model. Experimental results demonstrate our approach's robust capability to follow an optimal racetrack trajectory at speeds of up to 37.5m/s while dealing with state estimation disturbances, achieving a minimum solving frequency of 97Hz. Additionally, our experiments illustrate that limiting the UPH renders previously infeasible SNMPC problems feasible, even when incorrect uncertainty assumptions or strong disturbances are present.

Citations (5)

Summary

We haven't generated a summary for this paper yet.