Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint (2310.18593v1)

Published 28 Oct 2023 in stat.ML, cs.CY, and cs.LG

Abstract: Fair Principal Component Analysis (PCA) is a problem setting where we aim to perform PCA while making the resulting representation fair in that the projected distributions, conditional on the sensitive attributes, match one another. However, existing approaches to fair PCA have two main problems: theoretically, there has been no statistical foundation of fair PCA in terms of learnability; practically, limited memory prevents us from using existing approaches, as they explicitly rely on full access to the entire data. On the theoretical side, we rigorously formulate fair PCA using a new notion called \emph{probably approximately fair and optimal} (PAFO) learnability. On the practical side, motivated by recent advances in streaming algorithms for addressing memory limitation, we propose a new setting called \emph{fair streaming PCA} along with a memory-efficient algorithm, fair noisy power method (FNPM). We then provide its {\it statistical} guarantee in terms of PAFO-learnability, which is the first of its kind in fair PCA literature. Lastly, we verify the efficacy and memory efficiency of our algorithm on real-world datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.