Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Well Do Feature-Additive Explainers Explain Feature-Additive Predictors? (2310.18496v1)

Published 27 Oct 2023 in cs.LG and cs.AI

Abstract: Surging interest in deep learning from high-stakes domains has precipitated concern over the inscrutable nature of black box neural networks. Explainable AI (XAI) research has led to an abundance of explanation algorithms for these black boxes. Such post hoc explainers produce human-comprehensible explanations, however, their fidelity with respect to the model is not well understood - explanation evaluation remains one of the most challenging issues in XAI. In this paper, we ask a targeted but important question: can popular feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain feature-additive predictors? Herein, we evaluate such explainers on ground truth that is analytically derived from the additive structure of a model. We demonstrate the efficacy of our approach in understanding these explainers applied to symbolic expressions, neural networks, and generalized additive models on thousands of synthetic and several real-world tasks. Our results suggest that all explainers eventually fail to correctly attribute the importance of features, especially when a decision-making process involves feature interactions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zachariah Carmichael (17 papers)
  2. Walter J. Scheirer (41 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.