Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order-2 Delaunay Triangulations Optimize Angles (2310.18238v4)

Published 27 Oct 2023 in math.CO, cs.CG, and math.MG

Abstract: The local angle property of the (order-$1$) Delaunay triangulations of a generic set in $\mathbb{R}2$ asserts that the sum of two angles opposite a common edge is less than $\pi$. This paper extends this property to higher order and uses it to generalize two classic properties from order-$1$ to order-$2$: (1) among the complete level-$2$ hypertriangulations of a generic point set in $\mathbb{R}2$, the order-$2$ Delaunay triangulation lexicographically maximizes the sorted angle vector; (2) among the maximal level-$2$ hypertriangulations of a generic point set in $\mathbb{R}2$, the order-$2$ Delaunay triangulation is the only one that has the local angle property. We also use our method of establishing (2) to give a new short proof of the angle vector optimality for the (order-1) Delaunay triangulation. For order-$1$, both properties have been instrumental in numerous applications of Delaunay triangulations, and we expect that their generalization will make order-$2$ Delaunay triangulations more attractive to applications as well.

Summary

We haven't generated a summary for this paper yet.