Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Trustworthy Edge Intelligence: From Security and Reliability To Transparency and Sustainability (2310.17944v2)

Published 27 Oct 2023 in cs.LG

Abstract: Edge Intelligence (EI) integrates Edge Computing (EC) and AI to push the capabilities of AI to the network edge for real-time, efficient and secure intelligent decision-making and computation. However, EI faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EI in the eyes of stakeholders. This survey comprehensively summarizes the characteristics, architecture, technologies, and solutions of trustworthy EI. Specifically, we first emphasize the need for trustworthy EI in the context of the trend toward large models. We then provide an initial definition of trustworthy EI, explore its key characteristics and give a multi-layered architecture for trustworthy EI. Then, we summarize several important issues that hinder the achievement of trustworthy EI. Subsequently, we present enabling technologies for trustworthy EI systems and provide an in-depth literature review of the state-of-the-art solutions for realizing the trustworthiness of EI. Finally, we discuss the corresponding research challenges and open issues.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (127)
  1. H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and deep learning for resource allocation in multi-access edge computing: A survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2449–2494, 2022.
  2. E. Baccour, N. Mhaisen, A. A. Abdellatif, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani, “Pervasive AI for IoT applications: A survey on resource-efficient distributed artificial intelligence,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2366–2418, 2022.
  3. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.
  4. Z. Zhang, B. Yang, B. Wang, and B. Li, “GrowSP: Unsupervised semantic segmentation of 3D point clouds,” in Proc. IEEE/CVF CVPR, 2023, pp. 17 619–17 629.
  5. O. M. Manyar, Z. McNulty, S. Nikolaidis, and S. K. Gupta, “Inverse reinforcement learning framework for transferring task sequencing policies from humans to robots in manufacturing applications,” in Proc. IEEE ICRA, 2023, pp. 849–856.
  6. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
  7. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.
  8. Y. Zhao, Z. Yang, X. He, X. Cai, X. Miao, and Q. Ma, “Trine: Cloud-edge-device cooperated real-time video analysis for household applications,” IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4973–4985, 2023.
  9. S. Baker and W. Xiang, “Artificial intelligence of things for smarter healthcare: A survey of advancements, challenges, and opportunities,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1261–1293, 2023.
  10. S. V. Balkus, H. Wang, B. D. Cornet, C. Mahabal, H. Ngo, and H. Fang, “A survey of collaborative machine learning using 5G vehicular communications,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1280–1303, 2022.
  11. Z. Ning, H. Hu, X. Wang, L. Guo, S. Guo, G. Wang, and X. Gao, “Mobile edge computing and machine learning in the Internet of unmanned aerial vehicles: A survey,” ACM Computing Surveys, doi:10.1145/3604933, 2023.
  12. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 5–36, 2022.
  13. D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy artificial intelligence: A review,” ACM Computing Surveys, vol. 55, no. 2, pp. 1–38, 2022.
  14. H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. Jain, and J. Tang, “Trustworthy AI: A computational perspective,” ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 1, pp. 1–59, 2022.
  15. B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy AI: From principles to practices,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–46, 2023.
  16. M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning inference on resource-constrained edge devices: A review,” Proceedings of the IEEE, vol. 111, no. 1, pp. 42–91, 2023.
  17. M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hussain, “Machine learning at the network edge: A survey,” ACM Computing Surveys, vol. 54, no. 8, pp. 1–37, 2021.
  18. Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient Edge AI: Algorithms and systems,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2167–2191, 2020.
  19. M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey of machine and deep learning methods for Internet of things (IoT) security,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.
  20. B. Mao, J. Liu, Y. Wu, and N. Kato, “Security and privacy on 6G network edge: A survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1095–1127, 2023.
  21. H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X. S. Shen, and H. V. Poor, “Exploring collaborative distributed diffusion-based AI-generated content (AIGC) in wireless networks,” IEEE Network, doi:10.1109/MNET.006.2300223, 2023.
  22. H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M. Du, “Explainability for large language models: A survey,” arXiv preprint, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.01029
  23. A. Kumar, V. Capraro, and M. Perc, “The evolution of trust and trustworthiness,” Journal of the Royal Society Interface, vol. 17, no. 169, p. 20200491, 2020.
  24. Z. Xiao, J. Shu, H. Jiang, G. Min, H. Chen, and Z. Han, “Perception task offloading with collaborative computation for autonomous driving,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 2, pp. 457–473, 2022.
  25. W. Hu, X. Meng, Y. Bai, A. Zhang, G. Qu, B. Cai, G. Zhang, T. W. Wilson, J. M. Stephen, V. D. Calhoun, and Y.-P. Wang, “Interpretable multimodal fusion networks reveal mechanisms of brain cognition,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1474–1483, 2021.
  26. S. Zhu, K. Ota, and M. Dong, “Green AI for IIoT: Energy efficient intelligent edge computing for industrial Internet of things,” IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 79–88, 2021.
  27. L. Liu, L. Wang, Z. Lu, Y. Liu, W. Jing, and X. Wen, “Cost-and-quality aware data collection for edge-assisted vehicular crowdsensing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5371–5386, 2022.
  28. M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D. I. Kim, V. Leung et al., “Unleashing the power of edge-cloud generative AI in mobile networks: A survey of AIGC services,” arXiv preprint, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.16129
  29. Y. Lin, Z. Gao, H. Du, D. Niyato, J. Kang, R. Deng, and X. S. Shen, “A unified blockchain-semantic framework for wireless edge intelligence enabled Web 3.0,” IEEE Wireless Communications, doi:10.1109/MWC.018.2200568, 2023.
  30. M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang, X. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 656–700, 2023.
  31. J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J. Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward proactive, adaptive defense: A survey on moving target defense,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 709–745, 2020.
  32. Y. Zhou, G. Cheng, and S. Yu, “An SDN-enabled proactive defense framework for DDoS mitigation in IoT networks,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5366–5380, 2021.
  33. K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek, and H. Vincent Poor, “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.
  34. A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: Theory and implementation,” ACM Computing Surveys, vol. 51, no. 4, pp. 1–35, 2018.
  35. X. Chen, H. Yu, X. Jia, and X. Yu, “Apfed: Anti-poisoning attacks in privacy-preserving heterogeneous federated learning,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 5749–5761, 2023.
  36. Z. Zhang, L. Wu, C. Ma, J. Li, J. Wang, Q. Wang, and S. Yu, “LSFL: A lightweight and secure federated learning scheme for edge computing,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 365–379, 2022.
  37. L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “Sear: Secure and efficient aggregation for byzantine-robust federated learning,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp. 3329–3342, 2021.
  38. P. Fu, J. Wu, X. Lin, and A. Shen, “ZTEI: Zero-trust and edge intelligence empowered continuous authentication for satellite networks,” in Proc. IEEE GLOBECOM, 2022, pp. 2376–2381.
  39. T. Wang, N. Huang, Y. Wu, J. Gao, and T. Q. S. Quek, “Latency-oriented secure wireless federated learning: A channel-sharing approach with artificial jamming,” IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9675–9689, 2023.
  40. Z. Xu and M. Baykal-Gürsoy, “Power allocation for cooperative jamming against a strategic eavesdropper over parallel channels,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 846–858, 2023.
  41. H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 375–388, 2021.
  42. S. Shi, C. Hu, D. Wang, Y. Zhu, and Z. Han, “Federated anomaly analytics for local model poisoning attack,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 2, pp. 596–610, 2021.
  43. X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao, and G. Wang, “Mean-field learning for edge computing in mobile blockchain networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 10, pp. 5978–5994, 2023.
  44. M. Xu, Z. Zou, Y. Cheng, Q. Hu, D. Yu, and X. Cheng, “SPDL: A blockchain-enabled secure and privacy-preserving decentralized learning system,” IEEE Transactions on Computers, vol. 72, no. 2, pp. 548–558, 2023.
  45. X. Wang, Y. Zhao, C. Qiu, Z. Liu, J. Nie, and V. C. Leung, “InFEdge: A blockchain-based incentive mechanism in hierarchical federated learning for end-edge-cloud communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3325–3342, 2022.
  46. M. T. Ribeiro, S. Singh, and C. Guestrin, “"Why should I trust you?" Explaining the predictions of any classifier,” in Proc. ACM SIGKDD, 2016, pp. 1135–1144.
  47. Y. Zhang, C. Xie, L. Xue, Y. Tao, G. Yue, and B. Jiang, “A post-hoc interpretable ensemble model to feature effect analysis in warfarin dose prediction for chinese patients,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 2, pp. 840–851, 2022.
  48. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Proc. NeurIPS, vol. 30, 2017, pp. 4768–4777.
  49. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations to global understanding with explainable AI for trees,” Nature Machine Intelligence, vol. 2, no. 1, pp. 56–67, 2020.
  50. J. Cheng, M. Gao, J. Liu, H. Yue, H. Kuang, J. Liu, and J. Wang, “Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 2, pp. 673–684, 2022.
  51. A. Oseni, N. Moustafa, G. Creech, N. Sohrabi, A. Strelzoff, Z. Tari, and I. Linkov, “An explainable deep learning framework for resilient intrusion detection in IoT-enabled transportation networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp. 1000–1014, 2023.
  52. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in Proc. IEEE/CVF ICCV, 2017, pp. 618–626.
  53. Y. S. Jeon, K. Yoshino, S. Hagiwara, A. Watanabe, S. T. Quek, H. Yoshioka, and M. Feng, “Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 7, pp. 2388–2397, 2021.
  54. J. Zhang, F. Zhang, X. Huang, and X. Liu, “Leakage-resilient authenticated key exchange for edge artificial intelligence,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp. 2835–2847, 2021.
  55. B. Gong, C. Guo, C. Guo, C. Guo, Y. Sun, M. Waqas, and S. Chen, “SLIM: A secure and lightweight multi-authority attribute-based signcryption scheme for IoT,” IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1299–1312, 2024.
  56. R. Kaewpuang, M. Xu, W. Y. B. Lim, D. Niyato, H. Yu, J. Kang, and X. S. Shen, “Cooperative resource management in quantum key distribution (QKD) networks for semantic communication,” IEEE Internet of Things Journal, doi:10.1109/JIOT.2023.3301033, 2023.
  57. B. Li, T. Shi, W. Zhao, and N. Wang, “Reinforcement learning-based intelligent reflecting surface assisted communications against smart attackers,” IEEE Transactions on Communications, vol. 70, no. 7, pp. 4771–4779, 2022.
  58. Q. He, S. Fang, T. Wang, Y. Liu, S. Zhao, and Z. Lu, “Proactive anti-eavesdropping with trap deployment in wireless networks,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 637–649, 2023.
  59. T. Zhang, Y. Huo, Q. Gao, L. Ma, Y. Wu, and R. Li, “Cooperative physical layer authentication with reputation-inspired collaborator selection,” IEEE Internet of Things Journal, vol. 10, no. 24, pp. 22 165–22 181, 2023.
  60. H. Fang, Z. Xiao, X. Wang, L. Xu, and L. Hanzo, “Collaborative authentication for 6G networks: An edge intelligence based autonomous approach,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 2091–2103, 2023.
  61. J. Cui, N. Liu, Q. Zhang, D. He, C. Gu, and H. Zhong, “Efficient and anonymous cross-domain authentication for IIoT based on blockchain,” IEEE Transactions on Network Science and Engineering, vol. 10, no. 2, pp. 899–910, 2023.
  62. F. Tong, X. Chen, K. Wang, and Y. Zhang, “CCAP: A complete cross-domain authentication based on blockchain for Internet of things,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 3789–3800, 2022.
  63. X. Wang, H. Zhu, Z. Ning, L. Guo, and Y. Zhang, “Blockchain intelligence for Internet of vehicles: Challenges and solutions,” IEEE Communications Surveys & Tutorials, doi:10.1109/COMST.2023.3305312, 2023.
  64. J. Zhou, N. Wu, Y. Wang, S. Gu, Z. Cao, X. Dong, and K.-K. R. Choo, “A differentially private federated learning model against poisoning attacks in edge computing,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 3, pp. 1941–1958, 2023.
  65. X. Li, Z. Qu, S. Zhao, B. Tang, Z. Lu, and Y. Liu, “LoMar: A local defense against poisoning attack on federated learning,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 437–450, 2023.
  66. A. R. Elkordy, S. Prakash, and S. Avestimehr, “Basil: A fast and Byzantine-resilient approach for decentralized training,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2694–2716, 2022.
  67. D. C. Nguyen, S. Hosseinalipour, D. J. Love, P. N. Pathirana, and C. G. Brinton, “Latency optimization for blockchain-empowered federated learning in multi-server edge computing,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3373–3390, 2022.
  68. Y. Qian, Y. Guo, Q. Shao, J. Wang, B. Wang, Z. Gu, X. Ling, and C. Wu, “EI-MTD: moving target defense for edge intelligence against adversarial attacks,” ACM Transactions on Privacy and Security, vol. 25, no. 3, pp. 1–24, 2022.
  69. G. Li, K. Ota, M. Dong, J. Wu, and J. Li, “DeSVig: Decentralized swift vigilance against adversarial attacks in industrial artificial intelligence systems,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3267–3277, 2020.
  70. X. Liu, B. Wu, X. Yuan, and X. Yi, “Leia: A lightweight cryptographic neural network inference system at the edge,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 237–252, 2022.
  71. K. Huang, X. Liu, S. Fu, D. Guo, and M. Xu, “A lightweight privacy-preserving CNN feature extraction framework for mobile sensing,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp. 1441–1455, 2021.
  72. N. Yang, C. Tang, and D. He, “A lightweight certificateless multi-user matchmaking encryption for mobile devices: Enhancing security and performance,” IEEE Transactions on Information Forensics and Security, vol. 19, pp. 251–264, 2024.
  73. J. Tchaye-Kondi, Y. Zhai, J. Shen, and L. Zhu, “Privacy-preserving offloading in edge intelligence systems with inductive learning and local differential privacy,” IEEE Transactions on Network and Service Management, vol. 20, no. 4, pp. 5026–5037, 2023.
  74. Y. Guo, F. Liu, T. Zhou, Z. Cai, and N. Xiao, “Privacy vs. efficiency: Achieving both through adaptive hierarchical federated learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 4, pp. 1331–1342, 2023.
  75. E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani, “RL-DistPrivacy: Privacy-aware distributed deep inference for low latency IoT systems,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 4, pp. 2066–2083, 2022.
  76. V. Shejwalkar and A. Houmansadr, “Membership privacy for machine learning models through knowledge transfer,” in Proc. AAAI, vol. 35, no. 11, 2021, pp. 9549–9557.
  77. L. Hu, J. Li, G. Lin, S. Peng, Z. Zhang, Y. Zhang, and C. Dong, “Defending against membership inference attacks with high utility by GAN,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 3, pp. 2144–2157, 2023.
  78. P. Zhang, Y. Wang, N. Kumar, C. Jiang, and G. Shi, “A security- and privacy-preserving approach based on data disturbance for collaborative edge computing in social IoT systems,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 97–108, 2022.
  79. Z. Xu, F. Yu, C. Liu, and X. Chen, “LanCeX: A versatile and lightweight defense method against condensed adversarial attacks in image and audio recognition,” ACM Transactions on Embedded Computing Systems, vol. 22, no. 1, pp. 1–24, 2022.
  80. H. Huang, W. Luo, G. Zeng, J. Weng, Y. Zhang, and A. Yang, “DAMIA: leveraging domain adaptation as a defense against membership inference attacks,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp. 3183–3199, 2021.
  81. Y. Wang, Y. He, F. R. Yu, Q. Lin, and V. C. M. Leung, “Efficient resource allocation in multi-UAV assisted vehicular networks with security constraint and attention mechanism,” IEEE Transactions on Wireless Communications, vol. 22, no. 7, pp. 4802–4813, 2023.
  82. Z. Ning, H. Chen, E. C. H. Ngai, X. Wang, L. Guo, and J. Liu, “Lightweight imitation learning for real-time cooperative service migration,” IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1503–1520, 2024.
  83. J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “IRAF: A deep reinforcement learning approach for collaborative mobile edge computing IoT networks,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7011–7024, 2019.
  84. F. Dong, H. Wang, D. Shen, Z. Huang, Q. He, J. Zhang, L. Wen, and T. Zhang, “Multi-exit DNN inference acceleration based on multi-dimensional optimization for edge intelligence,” IEEE Transactions on Mobile Computing, vol. 22, no. 9, pp. 5389–5405, 2023.
  85. F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and N. Michelusi, “Semi-decentralized federated learning with cooperative D2D local model aggregations,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3851–3869, 2021.
  86. Z. Zhang, Z. Gao, Y. Guo, and Y. Gong, “Scalable and low-latency federated learning with cooperative mobile edge networking,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 812–822, 2024.
  87. P. K. Deb, A. Mukherjee, D. Singh, and S. Misra, “Loop-the-loops: Fragmented learning over networks for constrained IoT devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 1, pp. 316–327, 2022.
  88. S. Hwang, H. Lee, J. Park, and I. Lee, “Decentralized computation offloading with cooperative UAVs: Multi-agent deep reinforcement learning perspective,” IEEE Wireless Communications, vol. 29, no. 4, pp. 24–31, 2022.
  89. Y. Xiao, Y. Song, and J. Liu, “Collaborative multi-agent deep reinforcement learning for energy-efficient resource allocation in heterogeneous mobile edge computing networks,” IEEE Transactions on Wireless Communications, doi:10.1109/TWC.2023.3335597, 2023.
  90. Z. Tian, Z. Zhang, Z. Yang, R. Jin, and H. Dai, “Distributed learning over networks with graph-attention-based personalization,” IEEE Transactions on Signal Processing, vol. 71, pp. 2071–2086, 2023.
  91. Z. Liu, A. Conti, S. K. Mitter, and M. Z. Win, “Communication-efficient distributed learning over networks–part I: Sufficient conditions for accuracy,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 4, pp. 1081–1101, 2023.
  92. Y. Deng, F. Lyu, J. Ren, Y.-C. Chen, P. Yang, Y. Zhou, and Y. Zhang, “Improving federated learning with quality-aware user incentive and auto-weighted model aggregation,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4515–4529, 2022.
  93. J. S. Ng, W. Y. B. Lim, Z. Xiong, X. Cao, D. Niyato, C. Leung, and D. I. Kim, “A hierarchical incentive design toward motivating participation in coded federated learning,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 359–375, 2021.
  94. W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung, and C. Miao, “Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 536–550, 2022.
  95. Y. Zhan and J. Zhang, “An incentive mechanism design for efficient edge learning by deep reinforcement learning approach,” in Proc. IEEE INFOCOM, 2020, pp. 2489–2498.
  96. M. Hu, W. Yang, Z. Luo, X. Liu, Y. Zhou, X. Chen, and D. Wu, “AutoFL: A bayesian game approach for autonomous client participation in federated edge learning,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 194–208, 2024.
  97. Y. Chen, Y. Zhang, S. Wang, F. Wang, Y. Li, Y. Jiang, L. Chen, and B. Guo, “DIM-DS: Dynamic incentive model for data sharing in federated learning based on smart contracts and evolutionary game theory,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 24 572–24 584, 2022.
  98. J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.
  99. Z. Wang, Q. Hu, R. Li, M. Xu, and Z. Xiong, “Incentive mechanism design for joint resource allocation in blockchain-based federated learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp. 1536–1547, 2023.
  100. M. Lee, G. Yu, and H. Dai, “Decentralized inference with graph neural networks in wireless communication systems,” IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp. 2582–2598, 2023.
  101. Z. Ning, S. Sun, X. Wang, L. Guo, G. Wang, X. Gao, and R. Y. Kwok, “Intelligent resource allocation in mobile blockchain for privacy and security transactions: A deep reinforcement learning based approach,” Science China Information Sciences, vol. 64, no. 6, p. 162303, 2021.
  102. J. Cui, Z. Lan, O. Sourina, and W. Müller-Wittig, “EEG-based cross-subject driver drowsiness recognition with an interpretable convolutional neural network,” IEEE Transactions on Neural Networks and Learning Systems, doi:10.1109/TNNLS.2022.3147208, 2022.
  103. J. Wang, Y. Li, Z. Zhou, C. Wang, Y. Hou, L. Zhang, X. Xue, M. Kamp, X. Zhang, and S. Chen, “When, where and how does it fail? A spatial-temporal visual analytics approach for interpretable object detection in autonomous driving,” IEEE Transactions on Visualization and Computer Graphics, doi:10.1109/TVCG.2022.3201101, 2022.
  104. M. Wu, M. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez, “Beyond sparsity: Tree regularization of deep models for interpretability,” in Proc. AAAI, vol. 32, no. 1, 2018.
  105. X. Zhu, D. Wang, W. Pedrycz, and Z. Li, “Fuzzy rule-based local surrogate models for black-box model explanation,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 6, pp. 2056–2064, 2023.
  106. D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME and SHAP: Adversarial attacks on post hoc explanation methods,” in Proc. AIES, 2020, pp. 180–186.
  107. G. Cui, Q. He, X. Xia, F. Chen, and Y. Yang, “Eesaver: Saving energy dynamically for green multi-access edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 7, pp. 2155–2166, 2023.
  108. M. Zhao, W. Li, L. Bao, J. Luo, Z. He, and D. Liu, “Fairness-aware task scheduling and resource allocation in UAV-enabled mobile edge computing networks,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 4, pp. 2174–2187, 2021.
  109. J. Chen, X. Cao, P. Yang, M. Xiao, S. Ren, Z. Zhao, and D. O. Wu, “Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 296–309, 2023.
  110. Y. Xiao, L. Xiao, K. Wan, H. Yang, Y. Zhang, Y. Wu, and Y. Zhang, “Reinforcement learning based energy-efficient collaborative inference for mobile edge computing,” IEEE Transactions on Communications, vol. 71, no. 2, pp. 864–876, 2023.
  111. Z. Hao, G. Xu, Y. Luo, H. Hu, J. An, and S. Mao, “Multi-agent collaborative inference via DNN decoupling: Intermediate feature compression and edge learning,” IEEE Transactions on Mobile Computing, vol. 22, no. 10, pp. 6041–6055, 2023.
  112. G. Xu, Z. Hao, Y. Luo, H. Hu, J. An, and S. Mao, “DeViT: Decomposing vision transformers for collaborative inference in edge devices,” IEEE Transactions on Mobile Computing, doi:10.1109/TMC.2023.3315138, 2023.
  113. S. Tuli and N. K. Jha, “EdgeTran: Device-aware co-search of transformers for efficient inference on mobile edge platforms,” IEEE Transactions on Mobile Computing, doi:10.1109/TMC.2023.3328287, 2023.
  114. R. Chen, L. Li, K. Xue, C. Zhang, M. Pan, and Y. Fang, “Energy efficient federated learning over heterogeneous mobile devices via joint design of weight quantization and wireless transmission,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 7451–7465, 2023.
  115. Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 7947–7962, 2021.
  116. Z. Xu, D. Li, W. Liang, W. Xu, Q. Xia, P. Zhou, O. F. Rana, and H. Li, “Energy or accuracy? Near-optimal user selection and aggregator placement for federated learning in MEC,” IEEE Transactions on Mobile Computing, doi:10.1109/TMC.2023.3262829, 2023.
  117. Y. Sun, S. Zhou, Z. Niu, and D. Gündüz, “Dynamic scheduling for over-the-air federated edge learning with energy constraints,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 227–242, 2022.
  118. D. Peng, F. Wu, and G. Chen, “Data quality guided incentive mechanism design for crowdsensing,” IEEE Transactions on Mobile Computing, vol. 17, no. 2, pp. 307–319, 2018.
  119. J. An, Z. Wang, X. He, X. Gui, J. Cheng, and R. Gui, “PPQC: A blockchain-based privacy-preserving quality control mechanism in crowdsensing applications,” IEEE/ACM Transactions on Networking, vol. 30, no. 3, pp. 1352–1367, 2022.
  120. M. Kang, R. Zhu, D. Chen, X. Liu, and W. Yu, “CM-GAN: A cross-modal generative adversarial network for imputing completely missing data in digital industry,” IEEE Transactions on Neural Networks and Learning Systems, doi:10.1109/TNNLS.2023.3284666, pp. 1–10, 2023.
  121. Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient caching algorithms and strategies for peer data sharing in pervasive edge computing environments,” IEEE Transactions on Mobile Computing, vol. 19, no. 4, pp. 852–864, 2020.
  122. A.-C. Nicolaescu, S. Mastorakis, and I. Psaras, “Store edge networked data (SEND): A data and performance driven edge storage framework,” in Proc. IEEE INFOCOM, doi:10.1109/INFOCOM42981.2021.9488804, 2021.
  123. R. Luo, H. Jin, Q. He, S. Wu, and X. Xia, “Enabling balanced data deduplication in mobile edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp. 1420–1431, 2023.
  124. J. Xia, G. Cheng, L. Luo, D. Guo, P. Lv, and B. Sun, “The doctrine of mean: Realizing deduplication storage at unreliable edge,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 10, pp. 2811–2826, 2023.
  125. A.-M. Nussberger, L. Luo, L. E. Celis, and M. J. Crockett, “Public attitudes value interpretability but prioritize accuracy in artificial intelligence,” Nature Communications, vol. 13, no. 1, p. 5821, 2022.
  126. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang, “XAI-Explainable artificial intelligence,” Science Robotics, vol. 4, no. 37, p. eaay7120, 2019.
  127. I. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, and R. Anderson, “The curse of recursion: Training on generated data makes models forget,” arXiv preprint, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.17493
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xiaojie Wang (108 papers)
  2. Beibei Wang (42 papers)
  3. Yu Wu (196 papers)
  4. Zhaolong Ning (9 papers)
  5. Song Guo (138 papers)
  6. Fei Richard Yu (31 papers)
Citations (3)