Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-dimensional Rayleigh-Bénard convection without boundaries (2310.17928v2)

Published 27 Oct 2023 in physics.flu-dyn

Abstract: We study the effects of Prandtl number $Pr$ and Rayleigh number $Ra$ in two-dimensional Rayleigh-B\'enard convection without boundaries, i.e. with periodic boundary conditions. In the limits of $Pr \to 0$ and $\infty$, we find that the dynamics are dominated by vertically oriented elevator modes that grow without bound, even at high Rayleigh numbers and with large scale dissipation. For finite Prandtl number in the range $10{-3} \leq Pr \leq 102$, the Nusselt number tends to follow the `ultimate' scaling $Nu \propto Pr{1/2} Ra{1/2}$, and the viscous dissipation scales as $\epsilon_\nu \propto Pr{1/2} Ra{-1/4}$. The latter scaling is based on the observation that enstrophy $\langle \omega2 \rangle \propto Pr0 Ra{1/4}$. The inverse cascade of kinetic energy forms the power-law spectrum $\hat E_u(k) \propto k{-2.3}$, while the direct cascade of potential energy forms the power-law spectrum $\hat E_\theta(k) \propto k{-1.2}$, with the exponents and the turbulent convective dynamics in the inertial range found to be independent of Prandtl number. Finally, the kinetic and potential energy fluxes are not constant in the inertial range, invalidating one of the assumptions underlying Bolgiano-Obukhov phenomenology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.