Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate-At-Most-k Encoding of SAT for Soft Constraints (2310.17898v1)

Published 27 Oct 2023 in cs.LO

Abstract: In the field of Boolean satisfiability problems (SAT), at-most-k constraints, which suppress the number of true target variables at most k, are often used to describe objective problems. At-most-k constraints are used not only for absolutely necessary constraints (hard constraints) but also for challenging constraints (soft constraints) to search for better solutions. To encode at-most-k constraints into Boolean expressions, there is a problem that the number of Boolean expressions basically increases exponentially with the number of target variables, so at-most-k often has difficulties for a large number of variables. To solve this problem, this paper proposes a new encoding method of at-most-k constraints, called approximate-at-most-k, which has totally fewer Boolean expressions than conventional methods on the one hand. On the other hand, it has lost completeness, i.e., some Boolean value assignments that satisfy the original at-most-k are not allowed with approximate-at-most-k; hence, it is called approximate. Without completeness, we still have potential benefits by using them only as soft constraints. For example, approximate-at-most-16 out of 32 variables requires only 15% of a conventional at-most-k on the literal number and covers 44% of the solution space. Thus, approximate-at-most-k can become an alternative encoding method for at-most-k, especially as soft constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.