Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric Exponential Time Requires Near-Maximum Circuit Size: Simplified, Truly Uniform (2310.17762v2)

Published 26 Oct 2023 in cs.CC

Abstract: In a recent breakthrough, Chen, Hirahara and Ren prove that $\mathsf{S_2E}/_1 \not\subset \mathsf{SIZE}[2n/n]$ by giving a single-valued $\mathsf{FS_2P}$ algorithm for the Range Avoidance Problem ($\mathsf{Avoid}$) that works for infinitely many input size $n$. Building on their work, we present a simple single-valued $\mathsf{FS_2P}$ algorithm for $\mathsf{Avoid}$ that works for all input size $n$. As a result, we obtain the circuit lower bound $\mathsf{S_2E} \not\subset {i.o.}$-$\mathsf{SIZE}[2n/n]$ and many other corollaries: 1. Almost-everywhere near-maximum circuit lower bound for $\mathsf{\Sigma_2E} \cap \mathsf{\Pi_2E}$ and $\mathsf{ZPE}{\mathsf{NP}}$. 2. Pseudodeterministic $\mathsf{FZPP}{\mathsf{NP}}$ constructions for: Ramsey graphs, rigid matrices, pseudorandom generators, two-source extractors, linear codes, hard truth tables, and $K{poly}$-random strings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Computational Complexity: A Modern Approach. Cambridge University Press, USA, 1st edition, 2009.
  2. Jin-Yi Cai. 𝖲2p⊆𝖹𝖯𝖯𝖭𝖯subscriptsuperscript𝖲𝑝2superscript𝖹𝖯𝖯𝖭𝖯\mathsf{S}^{p}_{2}\subseteq\mathsf{ZPP}^{\mathsf{NP}}sansserif_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⊆ sansserif_ZPP start_POSTSUPERSCRIPT sansserif_NP end_POSTSUPERSCRIPT. Journal of Computer and System Sciences, 73, 02 2007.
  3. Range avoidance, remote point, and hard partial truth table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1058–1066, New York, NY, USA, 2023. Association for Computing Machinery.
  4. Symmetric exponential time requires near-maximum circuit size. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2024, to appear. Association for Computing Machinery, 2024.
  5. Hardness vs randomness, revised: Uniform, non-black-box, and instance-wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 125–136, 2022.
  6. Explicit two-source extractors and resilient functions. Annals of Mathematics, 189(3):653 – 705, 2019.
  7. Reviewing bounds on the circuit size of the hardest functions. Information Processing Letters, 95(2):354–357, 2005.
  8. Probabilistic search algorithms with unique answers and their cryptographic applications. Electron. Colloquium Comput. Complex., TR11, 2011.
  9. How to construct random functions. J. ACM, 33(4):792–807, aug 1986.
  10. Range avoidance for constant depth circuits: Hardness and algorithms. In Nicole Megow and Adam D. Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
  11. Range avoidance for low-depth circuits and connections to pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
  12. Oded Goldreich. Computational complexity: A conceptual perspective. SIGACT News, 39(3):35–39, sep 2008.
  13. Computing solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing, 25(4):697–708, 1996.
  14. Indistinguishability obfuscation, range avoidance, and bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1076–1089, New York, NY, USA, 2023. Association for Computing Machinery.
  15. P = bpp if e requires exponential circuits: Derandomizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’97, page 220–229, New York, NY, USA, 1997. Association for Computing Machinery.
  16. Ravindran Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55(1):40–56, 1982.
  17. Total Functions in the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
  18. Oliver Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 433–444, 2021.
  19. Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271–1281, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society.
  20. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In Takano Asano, Hideki Imai, D. T. Lee, Shin-ichi Nakano, and Takeshi Tokuyama, editors, Computing and Combinatorics, pages 210–220, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
  21. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149–167, 1994.
  22. Stanisław P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics [electronic only], DS01, 2021.
  23. On the range avoidance problem for circuits. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 640–650, Los Alamitos, CA, USA, nov 2022. IEEE Computer Society.
  24. Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical Journal, 28(1):59–98, 1949.
  25. On Oracles and Algorithmic Methods for Proving Lower Bounds. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 99:1–99:26, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
Citations (7)

Summary

We haven't generated a summary for this paper yet.