Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Dimensional Gradient Helps Out-of-Distribution Detection (2310.17163v2)

Published 26 Oct 2023 in cs.CV

Abstract: Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discrepancy in parameter gradients during the backward process of DNNs has received insufficient attention. Existing studies on gradient disparities mainly focus on the utilization of gradient norms, neglecting the wealth of information embedded in gradient directions. To bridge this gap, in this paper, we conduct a comprehensive investigation into leveraging the entirety of gradient information for OOD detection. The primary challenge arises from the high dimensionality of gradients due to the large number of network parameters. To solve this problem, we propose performing linear dimension reduction on the gradient using a designated subspace that comprises principal components. This innovative technique enables us to obtain a low-dimensional representation of the gradient with minimal information loss. Subsequently, by integrating the reduced gradient with various existing detection score functions, our approach demonstrates superior performance across a wide range of detection tasks. For instance, on the ImageNet benchmark with ResNet50 model, our method achieves an average reduction of 11.15$\%$ in the false positive rate at 95$\%$ recall (FPR95) compared to the current state-of-the-art approach. The code would be released.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yingwen Wu (12 papers)
  2. Tao Li (441 papers)
  3. Xinwen Cheng (9 papers)
  4. Jie Yang (517 papers)
  5. Xiaolin Huang (101 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.