Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental Demonstration of Non-Stateful In-Memory Logic with 1T1R OxRAM Valence Change Mechanism Memristors (2310.16843v1)

Published 6 Oct 2023 in cs.AR, cs.ET, cs.SY, and eess.SY

Abstract: Processing-in-memory (PIM) is attractive to overcome the limitations of modern computing systems. Numerous PIM systems exist, varying by the technologies and logic techniques used. Successful operation of specific logic functions is crucial for effective processing-in-memory. Memristive non-stateful logic techniques are compatible with CMOS logic and can be integrated into a 1T1R memory array, similar to commercial RRAM products. This paper analyzes and demonstrates two non-stateful logic techniques: 1T1R logic and scouting logic. As a first step, the used 1T1R SiO\textsubscript{x} valence change mechanism memristors are characterized in reference to their feasibility to perform logic functions. Various logical functions of the two logic techniques are experimentally demonstrated, showing correct functionality in all cases. Following the results, the challenges and limitations of the RRAM characteristics and 1T1R configuration for the application in logical functions are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. T. N. Theis and H.-S. P. Wong, “The End of Moore’s Law: A New Beginning for Information Technology,” Computing in Science & Engineering, vol. 19, no. 2, pp. 41–50, 2017.
  2. R. S. Williams, “What’s Next? [The end of Moore’s law],” Computing in Science & Engineering, vol. 19, no. 2, pp. 7–13, 2017.
  3. R. Vishwa, R. Karthikeyan, R. Rohith, and A. Sabaresh, “Current Research and Future Prospects of Neuromorphic Computing in Artificial Intelligence,” IOP Conference Series: Materials Science and Engineering, vol. 912, no. 6, p. 062029, 2020.
  4. W. Ou, S. Xiao, C. Zhu, W. Han, and Q. Zhang, “An overview of brain-like computing: Architecture, applications, and future trends,” Frontiers in neurorobotics, vol. 16, p. 1041108, 2022.
  5. D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018.
  6. Z. Sun, E. Ambrosi, A. Bricalli, and D. Ielmini, “Logic Computing with Stateful Neural Networks of Resistive Switches,” Advanced Materials, vol. 30, no. 38, p. e1802554, 2018.
  7. S. Kvatinsky, “Real Processing-in-Memory with Memristive Memory Processing Unit (mMPU),” in 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP).   IEEE, 2019, pp. 142–148.
  8. H. H. Li, Y. Chen, C. Liu, J. P. Strachan, and N. Davila, “Looking Ahead for Resistive Memory Technology: A broad perspective on ReRAM technology for future storage and computing,” IEEE Consumer Electronics Magazine, vol. 6, no. 1, pp. 94–103, 2017.
  9. S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “MAGIC—Memristor-Aided Logic,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.
  10. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, “’Memristive’ switches enable ’stateful’ logic operations via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.
  11. S. Resch, H. Cilasun, Z. Chowdhury, M. Zabihi, Z. Zhao, J.-P. Wang, S. Sapatnekar, and U. R. Karpuzcu, “On Endurance of Processing in (Nonvolatile) Memory,” in Proceedings of the 50th Annual International Symposium on Computer Architecture, Y. Solihin and M. Heinrich, Eds.   New York, NY, USA: ACM, 2023, pp. 1–13.
  12. Z.-R. Wang, Y.-T. Su, Y. Li, Y.-X. Zhou, T.-J. Chu, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S. M. Sze, and X.-S. Miao, “Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 179–182, 2017.
  13. L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Hamdioui, “Scouting Logic: A Novel Memristor-Based Logic Design for Resistive Computing,” in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).   IEEE, 2017, pp. 176–181.
  14. W. Goes, D. Green, P. Blaise, G. Piccolboni, A. Bricalli, A. Regev, G. Molas, and J.-F. Nodin, “A Comprehensive Oxide-Based ReRAM TCAD Model with Experimental Verification,” in 2021 IEEE International Memory Workshop (IMW).   IEEE, 2021, pp. 1–4.
  15. G. Piccolboni and A. Bricalli, “WEEBIT-NANO 8X8 CROSSBAR ARRAYS PACKAGED UNIT OPERATING INSTRUCTION,” 2019.
  16. S. Wiefels, C. Bengel, N. Kopperberg, K. Zhang, R. Waser, and S. Menzel, “HRS Instability in Oxide-Based Bipolar Resistive Switching Cells,” IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4208–4215, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.