Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Topologically Nontrivial Three-Body Contact Interaction in One Dimension (2310.16576v2)

Published 25 Oct 2023 in quant-ph and hep-th

Abstract: It is known that three-body contact interactions in one-dimensional $n(\geq3)$-body problems of nonidentical particles can be topologically nontrivial: they are all classified by unitary irreducible representations of the pure twin group $PT_{n}$. It was, however, unknown how such interactions are described in the Hamiltonian formalism. In this paper, we study topologically nontrivial three-body contact interactions from the viewpoint of the path integral. Focusing on spinless particles, we construct an $n(n-1)(n-2)/3!$-parameter family of $n$-body Hamiltonians that corresponds to one particular one-dimensional unitary representation of $PT_{n}$. These Hamiltonians are written in terms of background Abelian gauge fields that describe infinitely-thin magnetic fluxes in the $n$-body configuration space.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)