Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Baby PIH: Parameterized Inapproximability of Min CSP (2310.16344v2)

Published 25 Oct 2023 in cs.CC

Abstract: The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only $(1-\varepsilon)$-satisfiable (where the parameter is the number of variables) for some constant $0<\varepsilon<1$. We consider a minimization version of CSPs (Min-CSP), where one may assign $r$ values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the $r \times r$ pairs of values assigned to its variables (call such a CSP instance $r$-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every $r \ge 1$, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even $r$-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Venkatesan Guruswami (128 papers)
  2. Xuandi Ren (9 papers)
  3. Sai Sandeep (12 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com