Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualizing Information on Smartwatch Faces: A Review and Design Space (2310.16185v2)

Published 24 Oct 2023 in cs.HC

Abstract: We present a systematic review and design space for visualizations on smartwatches and the context in which these visualizations are displayed--smartwatch faces. A smartwatch face is the main smartwatch screen that wearers see when checking the time. Smartwatch faces are small data dashboards that present a variety of data to wearers in a compact form. Yet, the usage context and form factor of smartwatch faces pose unique design challenges for visualization. In this paper, we present an in-depth review and analysis of visualization designs for popular premium smartwatch faces based on their design styles, amount and types of data, as well as visualization styles and encodings they included. From our analysis we derive a design space to provide an overview of the important considerations for new data displays for smartwatch faces and other small displays. Our design space can also serve as inspiration for design choices and grounding of empirical work on smartwatch visualization design. We end with a research agenda that points to open opportunities in this nascent research direction. Supplementary material is available at: https://osf.io/nwy2r/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. T. Blascheck, L. Besançon, A. Bezerianos, B. Lee, and P. Isenberg, “Glanceable visualization: Studies of data comparison performance on smartwatches,” IEEE TVCG, vol. 25, no. 1, pp. 630–640, 2019.
  2. A. Islam, A. Bezerianos, B. Lee, T. Blascheck, and P. Isenberg, “Visualizing information on watch faces: A survey with smartwatch users,” in Proc. IEEE Visualization, Short Papers, 2020, pp. 156–160.
  3. C. Min, S. Kang, C. Yoo, J. Cha, S. Choi, Y. Oh, and J. Song, “Exploring current practices for battery use and management of smartwatches,” in Proc. of Wearable Computers.   ACM, 2015, pp. 11–18.
  4. M. T. Raghunath and C. Narayanaswami, “User interfaces for applications on a wrist watch,” Personal Ubiquitous Comput., vol. 6, no. 1, pp. 17–30, 2002.
  5. A. Kamišalić, I. Fister, M. Turkanović, and S. Karakatič, “Sensors and functionalities of non-invasive wrist-wearable devices: A review,” Sensors, vol. 18, no. 6, p. 1714, 2018.
  6. A. Neshati, B. Rey, A. S. Mohommed Faleel, S. Bardot, C. Latulipe, and P. Irani, “Bezelglide: Interacting with graphs on smartwatches with minimal screen occlusion,” in Proc. of Human Factors in Computing Systems.   ACM, 2021.
  7. A. Neshati, A. Salo, S. A. Faleel, Z. Li, H.-N. Liang, C. Latulipe, and P. Irani, “EdgeSelect: Smartwatch data interaction with minimal screen occlusion,” in Proc. of the Conference on Multimodal Interaction.   ACM, 2022, pp. 288–298.
  8. Y.-H. Kim, D. Chou, B. Lee, M. Danilovich, A. Lazar, D. E. Conroy, H. Kacorri, and E. K. Choe, “MyMove: Facilitating older adults to collect in-situ activity labels on a smartwatch with speech,” in Proc. of Human Factors in Computing Systems.   ACM, 2022.
  9. B. Rey, B. Lee, E. K. Choe, and P. Irani, “Investigating in-situ personal health data queries on smartwatches,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 4, pp. 1–19, 2023.
  10. S. Pizza, B. Brown, D. McMillan, and A. Lampinen, “Smartwatch in vivo,” in Proc. of Human Factors in Computing Systems.   ACM, 2016, pp. 5456–5469.
  11. F. Amini, K. Hasan, A. Bunt, and P. Irani, “Data representations for in-situ exploration of health and fitness data,” in Proc. of Pervasive Computing Technologies for Healthcare.   ACM, 2017, pp. 163–172.
  12. A. Suciu and J. Larsen, “Active self-tracking and visualization of subjective experience using VAS and time spirals on a smartwatch,” in Proc. of the Data Visualization on Mobile Devices Workshop held at the Conference on Human Factor in Computing Systems, 2018.
  13. S. Carpendale, P. Isenberg, C. Perin, T. Blascheck, F. Daneshzand, A. Islam, K. Currier, P. Buk, V. Cheung, L. Quach, and L. Vermette, “Mobile Visualization Design: An Ideation Method to Try,” in Mobile Data Visualization.   Chapman and Hall/CRC, 2021, pp. 241–261.
  14. R. Gouveia, F. Pereira, E. Karapanos, S. A. Munson, and M. Hassenzahl, “Exploring the design space of glanceable feedback for physical activity trackers,” in Proc. of Pervasive and Ubiquitous Computing.   ACM, 2016, pp. 144–155.
  15. D. Albers, M. Correll, and M. Gleicher, “Task-driven evaluation of aggregation in time series visualization,” in Proc. of the Conference on Human Factors in Computing Systems.   ACM, 2014, pp. 551–560.
  16. R. Gouveia, E. Karapanos, and M. Hassenzahl, “How do we engage with activity trackers? a longitudinal study of habito,” in Proc. of Pervasive and Ubiquitous Computing.   ACM, 2015, pp. 1305–1316.
  17. A. Visuri, Z. Sarsenbayeva, N. van Berkel, J. Goncalves, R. Rawassizadeh, V. Kostakos, and D. Ferreira, “Quantifying sources and types of smartwatch usage sessions,” in Proc. of Human Factors in Computing Systems.   ACM, 2017, pp. 3569–3581.
  18. T. Blascheck, L. Besançon, A. Bezerianos, B. Lee, A. Islam, T. He, and P. Isenberg, “Studies of part-to-whole glanceable visualizations on smartwatch faces,” in The IEEE Pacific Visualization Symposium (PacificVis), 2023, pp. 187–196.
  19. K. Lyons, “Visual parameters impacting reaction times on smartwatches,” in Proc. Conference on Human-Computer Interaction with Mobile Devices and Services.   ACM, 2016, pp. 190–194.
  20. S. M. Neis and M. I. Blackstun, “Feasibility analysis of wearables for use by airline crew,” in Proc. of the IEEE/AIAA Digital Avionics Systems Conference.   IEEE, 2016, pp. 1–9.
  21. Y. Chen, “Visualizing Large Time-series Data on Very Small Screens,” in Short Papers of the European Conference on Visualization (EuroVis).   The Eurographics Association, 2017.
  22. A. Neshati, Y. Sakamoto, L. C. Leboe-McGowan, J. Leboe-McGowan, M. Serrano, and P. Irani, “G-sparks: Glanceable sparklines on smartwatches,” in Proc. Graphics Interface.   Canadian Information Processing Society, 2019, pp. 23–1.
  23. A. Neshati, F. Alallah, B. Rey, Y. Sakamoto, M. Serrano, and P. Irani, “SF-LG: Space-filling line graphs for visualizing interrelated time-series data on smartwatches,” in Proc. of the International Conference on Mobile Human-Computer Interaction.   ACM, 2021, pp. 1–13.
  24. Ö. Pektaş, M. Köseoğlu, M. Muzny, G. Hartvigsen, and E. Årsand, “Design of an android wear smartwatch application as a wearable interface to the diabetes diary application,” Academic Platform - Journal of Engineering and Science, vol. 9, no. 1, pp. 126–133, 2021.
  25. J. Niess, K. Knaving, A. Kolb, and P. W. Woźniak, “Exploring fitness tracker visualisations to avoid rumination,” in International Conference on Human-Computer Interaction with Mobile Devices and Services.   ACM, 2020.
  26. H. Havlucu, I. Bostan, A. Coskun, and O. Özcan, “Understanding the lonesome tennis players: Insights for future wearables,” in Proc. of the Conference on Human Factors in Computing Systems.   ACM, 2017, pp. 1678–1685.
  27. A. Schiewe, A. Krekhov, F. Kerber, F. Daiber, and J. Krüger, “A study on real-time visualizations during sports activities on smartwatches,” in Proc. of the International Conference on Mobile and Ubiquitous Multimedia, 2020, pp. 18–31.
  28. A. Esakia and L. Kotut, “Smartwatch-centered design and development in mobile computing classes,” in Proc. of the Frontiers in Education Conference.   IEEE, 2020, pp. 1–7.
  29. K. Klamka and R. Dachselt, “Bendable color ePaper displays for novel wearable applications and mobile visualization,” in Proc. of User Interface Software and Technology.   ACM, 2021, pp. 6–10.
  30. C. Xu and K. Lyons, “Shimmering smartwatches: Exploring the smartwatch design space,” in Proc. of the International Conference on Tangible, Embedded, and Embodied Interaction.   ACM, 2015, pp. 69–76.
  31. A. Islam, R. Aravind, T. Blascheck, A. Bezerianos, and P. Isenberg, “Preferences and effectiveness of sleep data visualizations for smartwatches and fitness bands,” in Proc. of Human Factors in Computing Systems.   ACM, 2022.
  32. A. Neshati, Y. Sakamoto, and P. Irani, “Challenges in displaying health data on small smartwatch screens,” in Improving Usability, Safety and Patient Outcomes with Health Information Technology, F. Lau, J. Bartle-Clar, G. Bliss, E. Borycki, K. Courtney, A. M.-H. Kuo, A. Kushniruk, H. Monkman, and A. Roudsari, Eds.   IOS Press, 2019, pp. 325–332.
  33. K. Hänsel, A. Alomainy, and H. Haddadi, “Large scale mood and stress self-assessments on a smartwatch,” in Proc. of Pervasive and Ubiquitous Computing.   ACM, 2016, pp. 1180–1184.
  34. S. Zenker and S. Hobert, “Design and implementation of a collaborative smartwatch application supporting employees in industrial workflows,” in Proc. of the European Conference on Information Systems.   Association for Information Systems Electronic Library, 2019, pp. 1–16.
  35. C. Gkournelos, P. Karagiannis, N. Kousi, G. Michalos, S. Koukas, and S. Makris, “Application of wearable devices for supporting operators in human-robot cooperative assembly tasks,” Procedia CIRP, vol. 76, pp. 177–182, 2018.
  36. Y. Bernaerts, M. Druwé, S. Steensels, J. Vermeulen, and J. Schöning, “The office smartwatch: Development and design of a smartwatch app to digitally augment interactions in an office environment,” in Companion Publication, Designing Interactive Systems.   ACM, 2014, pp. 41–44.
  37. W. K. Bodin, D. Jaramillo, S. K. Marimekala, and M. Ganis, “Security challenges and data implications by using smartwatch devices in the enterprise,” in Proc. of the International Conference Expo on Emerging Technologies for a Smarter World.   IEEE, 2015, pp. 1–5.
  38. B. G. Lee, J.-H. Park, C. C. Pu, and W.-Y. Chung, “Smartwatch-based driver vigilance indicator with kernel-fuzzy-c-means-wavelet method,” IEEE Sensors Journal, vol. 16, no. 1, pp. 242–253, 2016.
  39. G. Li, B.-L. Lee, and W.-Y. Chung, “Smartwatch-based wearable eeg system for driver drowsiness detection,” IEEE Sensors Journal, vol. 15, no. 12, pp. 7169–7180, 2015.
  40. F. Grioui and T. Blascheck, “Study of heart rate visualizations on a virtual smartwatch,” in Proc. of Virtual Reality Software and Tech.   ACM, 2021.
  41. S. Langer, D. Dietz, and A. Butz, “Towards risk indication in mountain biking using smart wearables,” in Extended Abstracts, Conference on Human Factors in Computing Systems.   ACM, 2021, pp. 1–7.
  42. A.-R. Asadi, “iParallel: A smartwatch-based serious game for organizational learning,” in Proc. of the International Serious Games Symposium.   IEEE, 2020, pp. 68–73.
  43. D. Wenig, J. Schöning, B. Hecht, and R. Malaka, “Stripemaps: Improving map-based pedestrian navigation for smartwatches,” in Proc. of the Conf. on Human-Computer Interaction with Mobile Devices and Services.   ACM, 2015, pp. 52–62.
  44. M. Perebner, H. Huang, and G. Gartner, “Applying user-centred design for smartwatch-based pedestrian navigation system,” Journal of Location Based Services, vol. 13, no. 3, pp. 213–237, 2019.
  45. S. Gedicke, A. Bonerath, B. Niedermann, and J. Haunert, “Zoomless maps: External labeling methods for the interactive exploration of dense point sets at a fixed map scale,” IEEE Transactions on Visualization & Computer Graphics, vol. 27, no. 02, pp. 1247–1256, feb 2021.
  46. M. Doan, F. L. Cibrian, A. Jang, N. Khare, S. Chang, A. Li, S. Schuck, K. D. Lakes, and G. R. Hayes, “CoolCraig: A smart watch/phone application supporting co-regulation of children with ADHD,” in Extended Abstracts, Conference on Human Factors in Computing Systems.   ACM, 2020, pp. 1–7.
  47. M. Kosanović and S. N. Stosovic, “The concept for the “smart home” controlled by a smartwatch,” Facta universitatis. Series electronics and energetics, vol. 31, pp. 389–400, 2018.
  48. M. Agnihotri, R. Upadhyaya, K. Kenna, and C.-D. Chiang, “Rist: An interface design project for indoor navigation,” in Proc. of Communications in Computer and Information Science, vol. 714.   Springer, 2017, pp. 327–334.
  49. W.-C. Wang, C.-C. Chen, and T.-H. Chiu, “An initial exploration into the design of visualized interfaces to help children search for books using smartwatches,” in Proc. of the IFLA WLIC – Poster, 2017.
  50. M. van Rossum, “Patient empowerment via a smartwatch activity coach application: Let the patient gain back contral over their physical and mental health condition,” Master’s thesis, TU Delft, 2020, last visited: February, 2022. [Online]. Available: http://resolver.tudelft.nl/uuid:472a369f-0915-4486-85d0-40323932e3a9
  51. Little Labs, Inc., “Facer–the largest watch face platform for apple watch, wearos, and tizen.” https://www.facer.io/, accessed: January, 2023.
  52. I. D. Foundation, “Skeuomorphism,” https://www.interaction-design.org/literature/topics/skeuomorphism/, accessed: January, 2023.
  53. K. Spiliotopoulos, M. Rigou, and S. Sirmakessis, “A comparative study of skeuomorphic and flat design from a ux perspective,” Multimodal Technologies and Interaction, vol. 2, no. 2, pp. 1–21, 2018.
  54. T. Munzner, “Developing design spaces for visualization, stanford HCI seminar talk slides,” http://www.cs.ubc.ca/~tmm/talks.html#stanf22, talk held on March 4th, 2022. Slides last visited: March, 2022.
  55. J. Vanderdonckt, S. Bouzit, G. Calvary, and D. Chêne, “Exploring a design space of graphical adaptive menus: Normal vs. small screens,” ACM Trans. Interact. Intell. Syst., vol. 10, no. 1, 2019.
  56. Android developer guides, “Watch face complications,” https://developer.android.com/training/wearables/watch-faces/complications/, accessed: March, 2022.
  57. Apple Developer Documentation, “Watch faces,” https://developer.apple.com/design/human-interface-guidelines/watch-faces/, accessed: July, 2023.
  58. L. Angelini, M. Caon, S. Carrino, L. Bergeron, N. Nyffeler, M. Jean-Mairet, and E. Mugellini, “Designing a desirable smart bracelet for older adults,” in Proc. of Pervasive and Ubiquitous Computing Adjunct Publication.   ACM, 2013, pp. 425–434.
  59. S. Schirra and F. R. Bentley, ““it’s kind of like an extra screen for my phone”: Understanding everyday uses of consumer smart watches,” in Extended Abstracts, Conference on Human Factors in Computing Systems.   ACM, 2015, pp. 2151–2156.
  60. P. Goffin, J. Boy, W. Willett, and P. Isenberg, “An exploratory study of word-scale graphics in data-rich text documents,” IEEE TVCG, vol. 23, no. 10, pp. 2275–2287, 2017.
  61. F. Beck and D. Weiskopf, “Word-sized graphics for scientific texts,” IEEE TVCG, vol. 23, no. 6, pp. 1576–1587, 2017.
  62. J. Fuchs, P. Isenberg, A. Bezerianos, and D. Keim, “A systematic review of experimental studies on data glyphs,” IEEE TVCG, vol. 23, no. 7, pp. 1863–1879, 2017.
  63. P. Dragicevic and S. Huot, “SpiraClock: A continuous and non-intrusive display for upcoming events,” in Extended Abstracts, Conference on Human Factors in Computing Systems.   ACM, 2002, pp. 604–605.
  64. C. G. Healey and A. P. Sawant, “On the limits of resolution and visual angle in visualization,” ACM Transactions on Applied Perception, vol. 9, no. 4, 2012.
  65. P. Isenberg, “Micro visualizations: Design and analysis of visualizations for small display spaces,” Habilitation, Université Paris-Saclay, 2021. [Online]. Available: https://hal.inria.fr/tel-03584024
  66. Y. Zhong, T. Isenberg, and P. Isenberg, “Black-and-White Textures for Visualization on E-ink Displays,” IEEE Conference on Visualization – Poster, 2020.
  67. S. Few, “There’s nothing mere about semantics,” https://www.perceptualedge.com/blog/?p=2793, Blog Post.
  68. A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher, “What do we talk about when we talk about dashboards?” IEEE TVCG, vol. 25, no. 1, pp. 682–692, 2019.
  69. B. Bach, E. Freeman, A. Abdul-Rahman, C. Turkay, S. Khan, Y. Fan, and M. Chen, “Dashboard design patterns,” IEEE TVCG, pp. 1–11, 2022.
  70. R. Zehrung, L. Huang, B. Lee, and E. K. Choe, “Investigating opportunities to support kids’ agency and well-being: A review of kids’ wearables,” arXiv preprint arXiv:2104.05979, 2021.
  71. S. Bateman, R. L. Mandryk, C. Gutwin, A. Genest, D. McDine, and C. Brooks, “Useful junk? The effects of visual embellishment on comprehension and memorability of charts,” in Proc. of Human Factors in Computing Systems.   ACM, 2010, pp. 2573–2582.
  72. X. Cai, K. Efstathiou, X. Xie, Y. Wu, Y. Shi, and L. Yu, “A study of the effect of doughnut chart parameters on proportion estimation accuracy,” Computer Graphics Forum, vol. 37, no. 6, pp. 300–312, 2018.
  73. W. Javed, B. McDonnel, and N. Elmqvist, “Graphical perception of multiple time series,” IEEE TVCG, vol. 16, no. 6, pp. 927–934, 2010.
  74. J. Heer, N. Kong, and M. Agrawala, “Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations,” in Proc. of Human Factors in Computing Systems.   ACM, 2009, pp. 1303–1312.
  75. C. Perin, R. Vuillemot, and J.-D. Fekete, “SoccerStories: A kick-off for visual soccer analysis,” IEEE TVCG, vol. 19, no. 12, pp. 2506–2515, 2013.
  76. S. Haroz, R. Kosara, and S. L. Franconeri, “Isotype visualization: Working memory, performance, and engagement with pictographs,” in Proc. of Human Factors in Computing Systems.   ACM, 2015, pp. 1191–1200.
  77. K. Klamka, T. Horak, and R. Dachselt, “Watch+strap: Extending smartwatches with interactive strapdisplays,” in Proc. of Human Factors in Computing Systems.   ACM, 2020, pp. 1–15.
  78. B. Lee, A. Srinivasan, P. Isenberg, and J. Stasko, “Post-wimp interaction for information visualization,” Foundations and Trends® in Human–Computer Interaction, vol. 14, no. 1, pp. 1–95, 2021.
  79. M. Brehmer, B. Lee, J. Stasko, and C. Tominski, “Interacting with visualization on mobile devices,” in Mobile Data Visualization.   Chapman and Hall/CRC, 2021, pp. 67–110.
  80. Y.-H. Kim, B. Lee, A. Srinivasan, and E. K. Choe, “Data@hand: Fostering visual exploration of personal data on smartphones leveraging speech and touch interaction,” in Proc. of Human Factors in Computing Systems.   ACM, 2021, pp. 1–17.
Citations (1)

Summary

We haven't generated a summary for this paper yet.