Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pix2HDR -- A pixel-wise acquisition and deep learning-based synthesis approach for high-speed HDR videos (2310.16139v2)

Published 24 Oct 2023 in eess.IV and cs.CV

Abstract: Accurately capturing dynamic scenes with wide-ranging motion and light intensity is crucial for many vision applications. However, acquiring high-speed high dynamic range (HDR) video is challenging because the camera's frame rate restricts its dynamic range. Existing methods sacrifice speed to acquire multi-exposure frames. Yet, misaligned motion in these frames can still pose complications for HDR fusion algorithms, resulting in artifacts. Instead of frame-based exposures, we sample the videos using individual pixels at varying exposures and phase offsets. Implemented on a monochrome pixel-wise programmable image sensor, our sampling pattern simultaneously captures fast motion at a high dynamic range. We then transform pixel-wise outputs into an HDR video using end-to-end learned weights from deep neural networks, achieving high spatiotemporal resolution with minimized motion blurring. We demonstrate aliasing-free HDR video acquisition at 1000 FPS, resolving fast motion under low-light conditions and against bright backgrounds - both challenging conditions for conventional cameras. By combining the versatility of pixel-wise sampling patterns with the strength of deep neural networks at decoding complex scenes, our method greatly enhances the vision system's adaptability and performance in dynamic conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM SIGGRAPH 2005 Papers, 2005, pp. 765–776.
  2. V. Popovic, K. Seyid, E. Pignat, Ö. Çogal, and Y. Leblebici, “Multi-camera platform for panoramic real-time hdr video construction and rendering,” Journal of Real-Time Image Processing, vol. 12, pp. 697–708, 2016.
  3. M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A versatile hdr video production system,” ACM Transactions on Graphics (TOG), vol. 30, no. 4, pp. 1–10, 2011.
  4. N. K. Kalantari and R. Ramamoorthi, “Deep hdr video from sequences with alternating exposures,” in Computer graphics forum, vol. 38, no. 2.   Wiley Online Library, 2019, pp. 193–205.
  5. G. Chen, C. Chen, S. Guo, Z. Liang, K.-Y. K. Wong, and L. Zhang, “Hdr video reconstruction: A coarse-to-fine network and a real-world benchmark dataset,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2502–2511.
  6. Z. Khan, P. Shettiwar, M. Khanna, and S. Raman, “Deephs-hdrvideo: deep high speed high dynamic range video reconstruction,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, 2022, pp. 1959–1966.
  7. J. N. Martel, L. K. Mueller, S. J. Carey, P. Dudek, and G. Wetzstein, “Neural sensors: Learning pixel exposures for hdr imaging and video compressive sensing with programmable sensors,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 7, pp. 1642–1653, 2020.
  8. S. K. Nayar and T. Mitsunaga, “High dynamic range imaging: Spatially varying pixel exposures,” in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1.   IEEE, 2000, pp. 472–479.
  9. S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” International Journal of Computer Vision, vol. 70, pp. 7–22, 2006.
  10. A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, “Convolutional sparse coding for high dynamic range imaging,” in Computer Graphics Forum, vol. 35, no. 2.   Wiley Online Library, 2016, pp. 153–163.
  11. M. M. Alghamdi, Q. Fu, A. K. Thabet, and W. Heidrich, “Reconfigurable snapshot hdr imaging using coded masks and inception network,” 2019.
  12. R. Gulve, N. Sarhangnejad, G. Dutta, M. Sakr, D. Nguyen, R. Rangel, W. Chen, Z. Xia, M. Wei, N. Gusev et al., “39 000-subexposures/s dual-adc cmos image sensor with dual-tap coded-exposure pixels for single-shot hdr and 3-d computational imaging,” IEEE Journal of Solid-State Circuits, 2023.
  13. Y. Luo and S. Mirabbasi, “A 30-fps 192×\times× 192 cmos image sensor with per-frame spatial-temporal coded exposure for compressive focal-stack depth sensing,” IEEE Journal of Solid-State Circuits, vol. 57, no. 6, pp. 1661–1672, 2022.
  14. S. Hajisharif, J. Kronander, and J. Unger, “Adaptive dualiso hdr reconstruction,” EURASIP Journal on Image and Video Processing, vol. 2015, no. 1, pp. 1–13, 2015.
  15. J. Zhang, J. P. Newman, X. Wang, C. S. Thakur, J. Rattray, R. Etienne-Cummings, and M. A. Wilson, “A closed-loop, all-electronic pixel-wise adaptive imaging system for high dynamic range videography,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 1803–1814, 2020.
  16. J. Zhang, T. Xiong, T. Tran, S. Chin, and R. Etienne-Cummings, “Compact all-cmos spatiotemporal compressive sensing video camera with pixel-wise coded exposure,” Optics express, vol. 24, no. 8, pp. 9013–9024, 2016.
  17. T. Portz, L. Zhang, and H. Jiang, “Random coded sampling for high-speed hdr video,” in IEEE International Conference on Computational Photography (ICCP).   IEEE, 2013, pp. 1–8.
  18. T. Mitsunaga and S. K. Nayar, “Radiometric self calibration,” in Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol. 1.   IEEE, 1999, pp. 374–380.
  19. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 2023, pp. 643–652.
  20. O. Gallo, N. Gelfandz, W.-C. Chen, M. Tico, and K. Pulli, “Artifact-free high dynamic range imaging,” in 2009 IEEE International conference on computational photography (ICCP).   IEEE, 2009, pp. 1–7.
  21. P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and E. Shechtman, “Robust patch-based hdr reconstruction of dynamic scenes.” ACM Trans. Graph., vol. 31, no. 6, pp. 203–1, 2012.
  22. T.-H. Oh, J.-Y. Lee, Y.-W. Tai, and I. S. Kweon, “Robust high dynamic range imaging by rank minimization,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 6, pp. 1219–1232, 2014.
  23. N. K. Kalantari, R. Ramamoorthi et al., “Deep high dynamic range imaging of dynamic scenes.” ACM Trans. Graph., vol. 36, no. 4, pp. 144–1, 2017.
  24. J. Cai, S. Gu, and L. Zhang, “Learning a deep single image contrast enhancer from multi-exposure images,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 2049–2062, 2018.
  25. Q. Yan, L. Zhang, Y. Liu, Y. Zhu, J. Sun, Q. Shi, and Y. Zhang, “Deep hdr imaging via a non-local network,” IEEE Transactions on Image Processing, vol. 29, pp. 4308–4322, 2020.
  26. S. Yao, “Robust image registration for multiple exposure high dynamic range image synthesis,” in Image Processing: Algorithms and Systems IX, vol. 7870.   SPIE, 2011, pp. 216–224.
  27. S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” International journal of computer vision, vol. 92, pp. 1–31, 2011.
  28. H. Zimmer, A. Bruhn, and J. Weickert, “Freehand hdr imaging of moving scenes with simultaneous resolution enhancement,” in Computer Graphics Forum, vol. 30, no. 2.   Wiley Online Library, 2011, pp. 405–414.
  29. M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Computer Graphics and Applications, vol. 27, no. 2, pp. 32–42, 2007.
  30. J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling, and H. Brendel, “Creating cinematic wide gamut hdr-video for the evaluation of tone mapping operators and hdr-displays,” in Digital photography X, vol. 9023.   SPIE, 2014, pp. 279–288.
  31. V. Ramachandra, M. Zwicker, and T. Nguyen, “Hdr imaging from differently exposed multiview videos,” in 2008 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video.   IEEE, 2008, pp. 85–88.
  32. Nayar and Branzoi, “Adaptive dynamic range imaging: Optical control of pixel exposures over space and time,” in Proceedings Ninth IEEE International Conference on Computer Vision.   IEEE, 2003, pp. 1168–1175.
  33. S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A 100,000 fps vision sensor with embedded 535gops/w 256×\times× 256 simd processor array,” in 2013 symposium on VLSI circuits.   IEEE, 2013, pp. C182–C183.
  34. Y. Jiang, I. Choi, J. Jiang, and J. Gu, “Hdr video reconstruction with tri-exposure quad-bayer sensors,” arXiv preprint arXiv:2103.10982, 2021.
  35. U. Cogalan, M. Bemana, K. Myszkowski, H.-P. Seidel, and T. Ritschel, “Learning hdr video reconstruction for dual-exposure sensors with temporally-alternating exposures,” Computers & Graphics, vol. 105, pp. 57–72, 2022.
  36. J. Zhang, J. Newman, Z. Wang, Y. Qian, W. Guo, Z. S. Chen, C. Linghu, R. Etienne-Cummings, E. Fossum, E. Boyden et al., “Pixel-wise programmability enables dynamic high-snr cameras for high-speed microscopy,” bioRxiv, pp. 2023–06, 2023.
  37. A. Agrawal, Y. Xu, and R. Raskar, “Invertible motion blur in video,” in ACM SIGGRAPH 2009 papers, 2009, pp. 1–8.
  38. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  39. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  40. J. Snell, K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer, and R. S. Zemel, “Learning to generate images with perceptual similarity metrics,” in 2017 IEEE International Conference on Image Processing (ICIP).   IEEE, 2017, pp. 4277–4281.
  41. H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration with neural networks,” IEEE Transactions on computational imaging, vol. 3, no. 1, pp. 47–57, 2016.
  42. R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions,” ACM Transactions on graphics (TOG), vol. 30, no. 4, pp. 1–14, 2011.
  43. M. Narwaria, M. P. Da Silva, and P. Le Callet, “Hdr-vqm: An objective quality measure for high dynamic range video,” Signal Processing: Image Communication, vol. 35, pp. 46–60, 2015.
  44. J. P. Newman, J. Zhang, A. Cuevas-Lopez, N. J. Miller, T. Honda, M.-S. H. van der Goes, A. H. Leighton, F. Carvalho, G. Lopes, A. Lakunina et al., “A unified open-source platform for multimodal neural recording and perturbation during naturalistic behavior,” bioRxiv, pp. 2023–08, 2023.
  45. E. Peli, “Contrast in complex images,” JOSA A, vol. 7, no. 10, pp. 2032–2040, 1990.
  46. M. Estribeau and P. Magnan, “Fast mtf measurement of cmos imagers using iso 12333 slanted-edge methodology,” in Detectors and Associated Signal Processing, vol. 5251.   SPIE, 2004, pp. 243–252.
  47. M. Jin, G. Meishvili, and P. Favaro, “Learning to extract a video sequence from a single motion-blurred image,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6334–6342.
  48. K. Purohit, A. Shah, and A. Rajagopalan, “Bringing alive blurred moments,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6830–6839.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com