Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SecV: Secure Code Partitioning via Multi-Language Secure Values (2310.15582v2)

Published 24 Oct 2023 in cs.CR and cs.PL

Abstract: Trusted execution environments like Intel SGX provide \emph{enclaves}, which offer strong security guarantees for applications. Running entire applications inside enclaves is possible, but this approach leads to a large trusted computing base (TCB). As such, various tools have been developed to partition programs written in languages such as C or Java into \emph{trusted} and \emph{untrusted} parts, which are run in and out of enclaves respectively. However, those tools depend on language-specific taint-analysis and partitioning techniques. They cannot be reused for other languages and there is thus a need for tools that transcend this language barrier. We address this challenge by proposing a multi-language technique to specify sensitive code or data, as well as a multi-language tool to analyse and partition the resulting programs for trusted execution environments like Intel SGX. We leverage GraalVM's Truffle framework, which provides a language-agnostic abstract syntax tree (AST) representation for programs, to provide special AST nodes called \emph{secure nodes} that encapsulate sensitive program information. Secure nodes can easily be embedded into the ASTs of a wide range of languages via Truffle's \emph{polyglot API}. Our technique includes a multi-language dynamic taint tracking tool to analyse and partition applications based on our generic secure nodes. Our extensive evaluation with micro- and macro-benchmarks shows that we can use our technique for two languages (Javascript and \python), and that partitioned programs can obtain up to $14.5\%$ performance improvement as compared to unpartitioned versions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.