Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Language Processing for Drug Discovery Knowledge Graphs: promises and pitfalls (2310.15572v1)

Published 24 Oct 2023 in cs.CL

Abstract: Building and analysing knowledge graphs (KGs) to aid drug discovery is a topical area of research. A salient feature of KGs is their ability to combine many heterogeneous data sources in a format that facilitates discovering connections. The utility of KGs has been exemplified in areas such as drug repurposing, with insights made through manual exploration and modelling of the data. In this article, we discuss promises and pitfalls of using NLP to mine unstructured text typically from scientific literature as a data source for KGs. This draws on our experience of initially parsing structured data sources such as ChEMBL as the basis for data within a KG, and then enriching or expanding upon them using NLP. The fundamental promise of NLP for KGs is the automated extraction of data from millions of documents a task practically impossible to do via human curation alone. However, there are many potential pitfalls in NLP-KG pipelines such as incorrect named entity recognition and ontology linking all of which could ultimately lead to erroneous inferences and conclusions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. J. Charles G. Jeynes (1 paper)
  2. Tim James (2 papers)
  3. Matthew Corney (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.