Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A direct solution to the interpolative inverse non-uniform fast Fourier transform problem for spectral analyses of non-equidistant time-series data (2310.15310v3)

Published 23 Oct 2023 in math.NA and cs.NA

Abstract: A simple least-squares optimisation enables the determination of the spectrum for irregularly sampled data that is readily reconstructed using an adjoint transformation of the Non-Uniform Fast Fourier Transform (NFFT). This is an improvement upon previously reported iterative methods for such problems, and is competitive in terms of time complexity with more recently proposed direct NFFT inversions when considering comparable matrix pre-computation steps. The software is highly portable, and available as a convenient Python package using standard libraries. Given its mathematical simplicity however, it can be easily implemented on any platform.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Kircheis and D. Potts, “Direct inversion of the nonequispaced fast fourier transform,” Linear Algebra and its Applications, vol. 575, pp. 106–140, 2019.
  2. N. Sánchez, Á. González-Zamora, J. Martínez-Fernández, M. Piles, and M. Pablos, “Integrated remote sensing approach to global agricultural drought monitoring,” Agricultural and forest meteorology, vol. 259, pp. 141–153, 2018.
  3. G. Grabherr, A. B. Gurung, J.-P. Dedieu, W. Haeberli, D. Hohenwallner, A. F. Lotter, L. Nagy, H. Pauli, and R. Psenner, “Long-term environmental observations in mountain biosphere reserves: recommendations from the eu glochamore project,” Mountain Research and Development, vol. 25, no. 4, pp. 376–382, 2005.
  4. R. Friel and D. Or, “Frequency analysis of time-domain reflectometry (tdr) with application to dielectric spectroscopy of soil constituents,” Geophysics, vol. 64, no. 3, pp. 707–718, 1999.
  5. C. Haley, “Missing-data nonparametric coherency estimation,” IEEE Signal Processing Letters, vol. 28, pp. 1704–1708, 2021.
  6. S. Dilmaghani, I. C. Henry, P. Soonthornnonda, E. R. Christensen, and R. C. Henry, “Harmonic analysis of environmental time series with missing data or irregular sample spacing,” Environmental science & technology, vol. 41, no. 20, pp. 7030–7038, 2007.
  7. D. Potts and M. Tasche, “Continuous window functions for nfft,” Advances in Computational Mathematics, vol. 47, pp. 1–34, 2021.
  8. S. Kunis and D. Potts, “Stability results for scattered data interpolation by trigonometric polynomials,” SIAM Journal on Scientific Computing, vol. 29, no. 4, pp. 1403–1419, 2007.
  9. J. Keiner, S. Kunis, and D. Potts, “Using NFFT3 - a software library for various nonequispaced fast Fourier transforms,” ACM Trans. Math. Software, vol. 36, pp. Article 19, 1–30, 2009.
  10. K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.
  11. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.
  12. H. Carslaw, “A historical note on gibbs’ phenomenon in fourier’s series and integrals,” Bulletin of the American Mathematical Society, 1925.
  13. F. Rasheed, P. Peng, R. Alhajj, and J. Rokne, “Fourier transform based spatial outlier mining,” in Intelligent Data Engineering and Automated Learning-IDEAL 2009: 10th International Conference, Burgos, Spain, September 23-26, 2009. Proceedings 10.   Springer, 2009, pp. 317–324.
  14. J. Markel, “Fft pruning,” IEEE transactions on Audio and Electroacoustics, vol. 19, no. 4, pp. 305–311, 1971.
  15. J. C. Bowman and Z. Ghoggali, “The partial fast fourier transform,” Journal of Scientific Computing, vol. 76, pp. 1578–1593, 2018.
  16. R. M. Roth and A. Lempel, “Application of circulant matrices to the construction and decoding of linear codes,” IEEE transactions on information theory, vol. 36, no. 5, pp. 1157–1163, 1990.
  17. J. Keiner, S. Kunis, and D. Potts, “Nfft 3.0-tutorial,” Chemnitz University of Technology, Department of Mathematics, Chemnitz, Germany, 2007.
  18. D. E. Wells, P. Vaníček, and S. D. Pagiatakis, “Least squares spectral analysis revisited,” Technical Report, 1985.
  19. D. M. Palmer, “A fast chi-squared technique for period search of irregularly sampled data,” The Astrophysical Journal, vol. 695, no. 1, p. 496, 2009.
  20. J. D. Scargle, “Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data,” Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., vol. 263, pp. 835–853, 1982.
  21. D. Kondrashov and M. Ghil, “Spatio-temporal filling of missing points in geophysical data sets,” Nonlinear Processes in Geophysics, vol. 13, no. 2, pp. 151–159, 2006.
  22. R. Vitale, J. A. Westerhuis, T. Næs, A. K. Smilde, O. E. De Noord, and A. Ferrer, “Selecting the number of factors in principal component analysis by permutation testing—numerical and practical aspects,” Journal of Chemometrics, vol. 31, no. 12, p. e2937, 2017.
  23. M. R. Allen and L. A. Smith, “Monte carlo ssa: Detecting irregular oscillations in the presence of colored noise,” Journal of climate, vol. 9, no. 12, pp. 3373–3404, 1996.
  24. A. Meenakshi and C. Rajian, “On a product of positive semidefinite matrices,” Linear algebra and its applications, vol. 295, no. 1-3, pp. 3–6, 1999.
  25. H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani, “Welcome to the tidyverse,” Journal of Open Source Software, vol. 4, no. 43, p. 1686, 2019.
  26. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2
  27. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
  28. J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
  29. “Notes on fourier analysis,” http://www.cs.toronto.edu/~jepson/csc320/notes/fourier.pdf, accessed: 2023-09-01.
Citations (2)

Summary

We haven't generated a summary for this paper yet.