Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement negativity between separated regions in quantum critical systems (2310.15273v4)

Published 23 Oct 2023 in cond-mat.str-el, cond-mat.stat-mech, hep-th, and quant-ph

Abstract: We study the entanglement between disjoint subregions in quantum critical systems through the lens of the logarithmic negativity. We work with systems in arbitrary dimensions, including conformal field theories and their corresponding lattice Hamiltonians, as well as resonating valence-bond states. At small separations, the logarithmic negativity is big and displays universal behavior, but we show non-perturbatively that it decays faster than any power at large separations. This can already be seen in the minimal setting of single-spin subregions. The corresponding absence of distillable entanglement at large separations generalizes the 1d result, and indicates that quantum critical groundstates do not possess long-range bipartite entanglement, at least for bosons. For systems with fermions, a more suitable definition of the logarithmic negativity exists that takes into account fermion parity, and we show that it decays algebraically. Along the way we obtain general results for the moments of the partially transposed density matrix.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
  2. M. B. Plenio, “Logarithmic negativity: a full entanglement monotone that is not convex,” Phys. Rev. Lett. 95, 090503 (2005).
  3. P. Calabrese, J. L. Cardy, and E. Tonni, “Entanglement negativity in quantum field theory,” Phys. Rev. Lett. 109, 130502 (2012), arXiv:1206.3092.
  4. P. Calabrese, J. L. Cardy, and E. Tonni, “Entanglement negativity in extended systems: A field theoretical approach,” J. Stat. Mech. P02008 (2013), arXiv:1210.5359.
  5. N. Klco and M. J. Savage, “Entanglement spheres and a UV-IR connection in effective field theories,” Phys. Rev. Lett. 127, 211602 (2021).
  6. N. Klco and M. J. Savage, “Geometric quantum information structure in quantum fields and their lattice simulation,” Phys. Rev. D 103, 065007 (2021).
  7. G. Parez, C. Berthiere, and W. Witczak-Krempa, “Separability and entanglement of resonating valence-bond states,” SciPost Phys. 15, 066 (2023).
  8. C. Boudreault, C. Berthiere, and W. Witczak-Krempa, “Entanglement and separability in continuum Rokhsar-Kivelson states,” Phys. Rev. Res. 4, 033251 (2022).
  9. H. Shapourian, K. Shiozaki, and S. Ryu, “Partial time-reversal transformation and entanglement negativity in fermionic systems,” Phys. Rev. B 95, 165101 (2017).
  10. H. Shapourian and S. Ryu, “Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states,” Phys. Rev. A 99, 022310 (2019).
  11. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883 (1998), arXiv:quant-ph/9804024.
  12. J. Eisert and M. B. Plenio, “A Comparison of entanglement measures,” J. Mod. Opt. 46, 145 (1999), arXiv:quant-ph/9807034.
  13. V. Eisler and Z. Zimborás, “On the partial transpose of fermionic Gaussian states,” New J. Phys. 17, 053048 (2015).
  14. H. Shapourian, P. Ruggiero, S. Ryu, and P. Calabrese, “Twisted and untwisted negativity spectrum of free fermions,” SciPost Phys. 7, 037 (2019).
  15. H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory,” J. Phys. A: Math. Theor. 42, 504007 (2009).
  16. M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, “Area laws in quantum systems: mutual information and correlations,” Phys. Rev. Lett. 100, 070502 (2008).
  17. R. Verch and R. F. Werner, “Distillability and positivity of partial transposes in general quantum field systems,” Rev. Math. Phys. 17, 545–576 (2005), arXiv:quant-ph/0403089.
  18. Springer International Publishing, 2018.
  19. Y. Javanmard, D. Trapin, S. Bera, J. H. Bardarson, and M. Heyl, “Sharp entanglement thresholds in the logarithmic negativity of disjoint blocks in the transverse-field Ising chain,” New J. Phys. 20, 083032 (2018).
  20. C. Berthiere and W. Witczak-Krempa, “Entanglement of skeletal regions,” Phys. Rev. Lett. 128, 240502 (2022).
  21. A. Osterloh, L. Amico, G. Falci, and R. Fazio, “Scaling of entanglement close to a quantum phase transition,” Nature 416, 608 (2002).
  22. T. J. Osborne and M. A. Nielsen, “Entanglement in a simple quantum phase transition,” Phys. Rev. A 66, 032110 (2002).
  23. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413 (1996).
  24. R. F. Werner and M. M. Wolf, “Bound entangled Gaussian states,” Phys. Rev. Lett. 86, 3658 (2001).
  25. P. W. Anderson, “Resonating valence bonds: A new kind of insulator?,” Mater. Res. Bull. 8, 153 (1973).
  26. S. Liang, B. Doucot, and P. W. Anderson, “Some new variational resonating-valence-bond-type wave functions for the spin-1/2121/21 / 2 antiferromagnetic heisenberg model on a square lattice,” Phys. Rev. Lett. 61, 365 (1988).
  27. H. Tasaki, “Order and disorder in the resonating-valence-bond state,” Phys. Rev. B 40, 9183 (1989).
  28. A. F. Albuquerque and F. Alet, “Critical correlations for short-range valence-bond wave functions on the square lattice,” Phys. Rev. B 82, 180408(R) (2010).
  29. Y. Tang, A. W. Sandvik, and C. L. Henley, “Properties of resonating-valence-bond spin liquids and critical dimer models,” Phys. Rev. B 84, 174427 (2011).
  30. G. Parez, C. Berthiere, and W. Witczak-Krempa, “Separability and entanglement of resonating valence-bond states,” arXiv:2212.11740.
  31. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. P06002 (2004).
  32. P. Pfeuty, “The one-dimensional Ising model with a transverse field,” Ann. Phys. 57, 79 (1970).
  33. V. Alba, “Entanglement negativity and conformal field theory: a Monte Carlo study,” J. Stat. Mech. P05013 (2013).
  34. J. L. Cardy, “Some results on the mutual information of disjoint regions in higher dimensions,” J. Phys. A: Math. Theor. 46, 285402 (2013).
  35. C. Agón, P. Bueno, and H. Casini, “Tripartite information at long distances,” SciPost Phys. 12, 153 (2022).
  36. W.-P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698 (1979).
  37. L. Wang, P. Corboz, and M. Troyer, “Fermionic quantum critical point of spinless fermions on a honeycomb lattice,” New J. Phys. 16, 103008 (2014).
  38. Z.-X. Li, Y.-F. Jiang, and H. Yao, “Fermion-sign-free Majarana-quantum-Monte-Carlo studies of quantum critical phenomena of Dirac fermions in two dimensions,” New J. Phys. 17, 085003 (2015).
  39. W. Zhu, X. Chen, Y.-C. He, and W. Witczak-Krempa, “Entanglement signatures of emergent Dirac fermions: Kagome spin liquid and quantum criticality,” Sci. Adv. 4, eaat5535 (2018).
  40. R. S. Erramilli, L. V. Iliesiu, P. Kravchuk, A. Liu, D. Poland, and D. Simmons-Duffin, “The Gross-Neveu-Yukawa archipelago,” JHEP 02, 036 (2023).
  41. S. Sang, Y. Li, T. Zhou, X. Chen, T. H. Hsieh, and M. P. A. Fisher, “Entanglement Negativity at Measurement-Induced Criticality,” PRX Quantum 2, 030313 (2021).
  42. B. Shi, X. Dai, and Y.-M. Lu, “Entanglement negativity at the critical point of measurement-driven transition,” arXiv:2012.00040.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com