Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dwork-type $q$-congruences through the $q$-Lucas theorem (2310.15207v1)

Published 23 Oct 2023 in math.NT

Abstract: Employing the $q$-Lucas theorem and some known $q$-supercongruences, we give some Dwork-type $q$-congruences, confirming three conjectures in [J. Combin. Theory, Ser. A 178 (2021), Art.~105362]. As conclusions, we obtain the following supercongruences: for any prime $p\equiv 1\pmod{4}$ and positive integer $r$, \begin{align*} \sum_{k=0}{(pr-1)/2} \frac{(\frac{1}{2})k3}{k!3} &\equiv -\Gamma_p(\tfrac{1}{4})4 \sum{k=0}{(p{r-1}-1)/2} \frac{(\frac{1}{2})k3}{k!3} \pmod{p{r+1}}, \ \sum{k=0}{pr-1} \frac{(\frac{1}{2})k3}{k!3} &\equiv -\Gamma_p(\tfrac{1}{4})4 \sum{k=0}{p{r-1}-1} \frac{(\frac{1}{2})_k3}{k!3} \pmod{p{r+1}}, \end{align*} where $\Gamma_p(x)$ stands for the $p$-adic Gamma function. The first one confirms a weaker form of Swisher's (H.3) conjecture for $p\equiv 1\pmod{4}$, which originally predicts that the supercongruence is true modulo $p{3r}$.

Summary

We haven't generated a summary for this paper yet.