Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography (2310.14961v1)

Published 23 Oct 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Coronary angiography continues to serve as the primary method for diagnosing coronary artery disease (CAD), which is the leading global cause of mortality. The severity of CAD is quantified by the location, degree of narrowing (stenosis), and number of arteries involved. In current practice, this quantification is performed manually using visual inspection and thus suffers from poor inter- and intra-rater reliability. The MICCAI grand challenge: Automatic Region-based Coronary Artery Disease diagnostics using the X-ray angiography imagEs (ARCADE) curated a dataset with stenosis annotations, with the goal of creating an automated stenosis detection algorithm. Using a combination of machine learning and other computer vision techniques, we propose the architecture and algorithm StenUNet to accurately detect stenosis from X-ray Coronary Angiography. Our submission to the ARCADE challenge placed 3rd among all teams. We achieved an F1 score of 0.5348 on the test set, 0.0005 lower than the 2nd place.

Citations (4)

Summary

We haven't generated a summary for this paper yet.