Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Navigating the Ocean with DRL: Path following for marine vessels (2310.14932v1)

Published 23 Oct 2023 in eess.SY and cs.SY

Abstract: Human error is a substantial factor in marine accidents, accounting for 85% of all reported incidents. By reducing the need for human intervention in vessel navigation, AI-based methods can potentially reduce the risk of accidents. AI techniques, such as Deep Reinforcement Learning (DRL), have the potential to improve vessel navigation in challenging conditions, such as in restricted waterways and in the presence of obstacles. This is because DRL algorithms can optimize multiple objectives, such as path following and collision avoidance, while being more efficient to implement compared to traditional methods. In this study, a DRL agent is trained using the Deep Deterministic Policy Gradient (DDPG) algorithm for path following and waypoint tracking. Furthermore, the trained agent is evaluated against a traditional PD controller with an Integral Line of Sight (ILOS) guidance system for the same. This study uses the Kriso Container Ship (KCS) as a test case for evaluating the performance of different controllers. The ship's dynamics are modeled using the maneuvering Modelling Group (MMG) model. This mathematical simulation is used to train a DRL-based controller and to tune the gains of a traditional PD controller. The simulation environment is also used to assess the controller's effectiveness in the presence of wind.

Citations (4)

Summary

We haven't generated a summary for this paper yet.