Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Derivative for Shallow Water Equations (2310.14931v2)

Published 20 Oct 2023 in math.NA and cs.NA

Abstract: Coastal erosion is a major and growing environmental problem describing the movement of sand caused by tides, waves or currents. Several phenomena contribute to the significant advance of the sea. These include climate change, with rising sea levels due to the melting of ice at the Earth's poles, the amplification of the tidal effect, leading to the transport of large masses of sand, storms, etc. We contribute to this problem by using topological shape optimization techniques applied to an PDE describing coastal erosion. We use Shallow water equations as a model.

Summary

We haven't generated a summary for this paper yet.