Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blow-up for time-fractional diffusion equations with superlinear convex semilinear terms (2310.14295v1)

Published 22 Oct 2023 in math.AP

Abstract: This article is concerned with a semilinear time-fractional diffusion equation with a superlinear convex semilinear term in a bounded domain $\Omega$ with the homogeneous Dirichlet, Neumann, Robin boundary conditions and non-negative and not identically vanishing initial value. The order of the fractional derivative in time is between $1$ and $0$, and the elliptic part is with time-independent coefficients. We prove (i) The solution with any initial value blow-up if the eigenvalue $\lambda_1$ of the elliptic operator with the minimum real part is non-positive. (ii) Otherwise, the solution blows up if a weighted $L1$-norm of initial value is greater than some critical value give by $\lambda_1$. We provide upper estimates of the blow-up times. The key is a comparison principle for time-fractional ordinary differential equations.

Summary

We haven't generated a summary for this paper yet.