Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Knowledge Graphs for Orphan Entity Allocation in Resume Processing (2310.14093v1)

Published 21 Oct 2023 in cs.CL

Abstract: Significant challenges are posed in talent acquisition and recruitment by processing and analyzing unstructured data, particularly resumes. This research presents a novel approach for orphan entity allocation in resume processing using knowledge graphs. Techniques of association mining, concept extraction, external knowledge linking, named entity recognition, and knowledge graph construction are integrated into our pipeline. By leveraging these techniques, the aim is to automate and enhance the efficiency of the job screening process by successfully bucketing orphan entities within resumes. This allows for more effective matching between candidates and job positions, streamlining the resume screening process, and enhancing the accuracy of candidate-job matching. The approach's exceptional effectiveness and resilience are highlighted through extensive experimentation and evaluation, ensuring that alternative measures can be relied upon for seamless processing and orphan entity allocation in case of any component failure. The capabilities of knowledge graphs in generating valuable insights through intelligent information extraction and representation, specifically in the domain of categorizing orphan entities, are highlighted by the results of our research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)

Summary

We haven't generated a summary for this paper yet.