Large Language Models and Multimodal Retrieval for Visual Word Sense Disambiguation (2310.14025v1)
Abstract: Visual Word Sense Disambiguation (VWSD) is a novel challenging task with the goal of retrieving an image among a set of candidates, which better represents the meaning of an ambiguous word within a given context. In this paper, we make a substantial step towards unveiling this interesting task by applying a varying set of approaches. Since VWSD is primarily a text-image retrieval task, we explore the latest transformer-based methods for multimodal retrieval. Additionally, we utilize LLMs as knowledge bases to enhance the given phrases and resolve ambiguity related to the target word. We also study VWSD as a unimodal problem by converting to text-to-text and image-to-image retrieval, as well as question-answering (QA), to fully explore the capabilities of relevant models. To tap into the implicit knowledge of LLMs, we experiment with Chain-of-Thought (CoT) prompting to guide explainable answer generation. On top of all, we train a learn to rank (LTR) model in order to combine our different modules, achieving competitive ranking results. Extensive experiments on VWSD demonstrate valuable insights to effectively drive future directions.