Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Image Generation by Spatial Transformation in Perceptual Colorspaces (2310.13950v1)

Published 21 Oct 2023 in cs.CV and eess.IV

Abstract: Deep neural networks are known to be vulnerable to adversarial perturbations. The amount of these perturbations are generally quantified using $L_p$ metrics, such as $L_0$, $L_2$ and $L_\infty$. However, even when the measured perturbations are small, they tend to be noticeable by human observers since $L_p$ distance metrics are not representative of human perception. On the other hand, humans are less sensitive to changes in colorspace. In addition, pixel shifts in a constrained neighborhood are hard to notice. Motivated by these observations, we propose a method that creates adversarial examples by applying spatial transformations, which creates adversarial examples by changing the pixel locations independently to chrominance channels of perceptual colorspaces such as $YC_{b}C_{r}$ and $CIELAB$, instead of making an additive perturbation or manipulating pixel values directly. In a targeted white-box attack setting, the proposed method is able to obtain competitive fooling rates with very high confidence. The experimental evaluations show that the proposed method has favorable results in terms of approximate perceptual distance between benign and adversarially generated images. The source code is publicly available at https://github.com/ayberkydn/stadv-torch

Citations (3)

Summary

We haven't generated a summary for this paper yet.