Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GeoLinter: A Linting Framework for Choropleth Maps (2310.13707v1)

Published 5 Oct 2023 in cs.HC and cs.GR

Abstract: Visualization linting is a proven effective tool in assisting users to follow established visualization guidelines. Despite its success, visualization linting for choropleth maps, one of the most popular visualizations on the internet, has yet to be investigated. In this paper, we present GeoLinter, a linting framework for choropleth maps that assists in creating accurate and robust maps. Based on a set of design guidelines and metrics drawing upon a collection of best practices from the cartographic literature, GeoLinter detects potentially suboptimal design decisions and provides further recommendations on design improvement with explanations at each step of the design process. We perform a validation study to evaluate the proposed framework's functionality with respect to identifying and fixing errors and apply its results to improve the robustness of GeoLinter. Finally, we demonstrate the effectiveness of the GeoLinter - validated through empirical studies - by applying it to a series of case studies using real-world datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Q. Chen, F. Sun, X. Xu, Z. Chen, J. Wang, and N. Cao, “Vizlinter: A linter and fixer framework for data visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 206–216, 2021.
  2. A. K. Hopkins, M. Correll, and A. Satyanarayan, “Visualint: Sketchy in situ annotations of chart construction errors,” in Computer Graphics Forum, vol. 39.   Wiley Online Library, 2020, pp. 219–228.
  3. A. McNutt and G. Kindlmann, “Linting for visualization: Towards a practical automated visualization guidance system,” in VisGuides: 2nd Workshop on the Creation, Curation, Critique and Conditioning of Principles and Guidelines in Visualization, 2018.
  4. K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager: Exploratory analysis via faceted browsing of visualization recommendations,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 649–658, 2015.
  5. D. Duke, “Modular techniques in information visualization,” in ACM International Conference Proceeding Series, vol. 16.   Citeseer, 2001, pp. 11–18.
  6. G. Wills and L. Wilkinson, “Autovis: Automatic visualization,” Information Visualization, vol. 9, no. 1, pp. 47–69, 2010.
  7. L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stonebraker, “Beagle: Automated extraction and interpretation of visualizations from the web,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–8.
  8. D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging for spreadsheets,” ACM SIGPLAN Notices, vol. 49, no. 10, pp. 507–523, 2014.
  9. D. W. Barowy, E. D. Berger, and B. Zorn, “Excelint: Automatically finding spreadsheet formula errors,” Proceedings of the ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–26, 2018.
  10. K. Muşlu, Y. Brun, and A. Meliou, “Preventing data errors with continuous testing,” in Proceedings of the 2015 International Symposium on Software Testing and Analysis, 2015, pp. 373–384.
  11. A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite: A grammar of interactive graphics,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 341–350, 2016.
  12. D. B. Perry, B. Howe, and C. Aragon, “Vizdeck: Streamlining exploratory visual analytics of scientific data,” 2013.
  13. D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer, “Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 438–448, 2018.
  14. H. Lin, D. Moritz, and J. Heer, “Dziban: Balancing agency & automation in visualization design via anchored recommendations,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–12.
  15. X. Qian, R. A. Rossi, F. Du, S. Kim, E. Koh, S. Malik, T. Y. Lee, and J. Chan, “Ml-based visualization recommendation: Learning to recommend visualizations from data,” arXiv preprint arXiv:2009.12316, 2020.
  16. H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu, “Kg4vis: A knowledge graph-based approach for visualization recommendation,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 195–205, 2022.
  17. R. G. Cromley, “Classed versus unclassed choropleth maps: A question of how many classes,” Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 32, no. 4, pp. 15–27, 1995.
  18. I. S. Evans, “The selection of class intervals,” Transactions of the Institute of British Geographers, pp. 98–124, 1977.
  19. G. A. Miller, “The magical number seven, plus or minus two: Some limits on our capacity for processing information.” Psychological review, vol. 63, no. 2, p. 81, 1956.
  20. M. Harrower and C. A. Brewer, “Colorbrewer. org: an online tool for selecting colour schemes for maps,” The Cartographic Journal, vol. 40, no. 1, pp. 27–37, 2003.
  21. Y. Zhang and R. Maciejewski, “Quantifying the visual impact of classification boundaries in choropleth maps,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 371–380, 2016.
  22. R. M. Smith, “Comparing traditional methods for selecting class intervals on choropleth maps,” The Professional Geographer, vol. 38, no. 1, pp. 62–67, 1986.
  23. A. Brychtova and A. Coltekin, “An empirical user study for measuring the influence of colour distance and font size in map reading using eye tracking,” The Cartographic Journal, vol. 53, no. 3, pp. 202–212, 2016.
  24. ——, “Discriminating classes of sequential and qualitative colour schemes,” International Journal of Cartography, vol. 1, no. 1, pp. 62–78, 2015.
  25. A. Brychtová and A. Çöltekin, “The effect of spatial distance on the discriminability of colors in maps,” Cartography and Geographic Information Science, vol. 44, no. 3, pp. 229–245, 2017.
  26. W. S. Cleveland and W. S. Cleveland, “A color-caused optical illusion on a statistical graph,” The American Statistician, vol. 37, no. 2, pp. 101–105, 1983.
  27. J. Schiewe, “Empirical studies on the visual perception of spatial patterns in choropleth maps,” KN-Journal of Cartography and Geographic Information, vol. 69, no. 3, pp. 217–228, 2019.
  28. M. McGranaghan, “Ordering choropleth map symbols: The effect of background,” The American Cartographer, vol. 16, no. 4, pp. 279–285, 1989.
  29. A. of American Geographers, U. C. for Geographic Information Science, M. C. T. Force, and B. of Knowledge Advisory Board, “Geographic information science and technology body of knowledge.”   Association of American Geographers, 2006.
  30. I. Golebiowska and A. Coltekin, “Rainbow dash: Intuitiveness, interpretability and memorability of the rainbow color scheme in visualization,” IEEE Transactions on Visualization and Computer Graphics, 2020.
  31. P. H. Laskowski, “The traditional and modern look at tissot’s indicatrix,” The American Cartographer, vol. 16, no. 2, pp. 123–133, 1989.
  32. L. E. Usery and J. C. Seong, “All equal-area map projections are created equal, but some are more equal than others,” Cartography and Geographic Information Science, vol. 28, no. 3, pp. 183–194, 2001.
  33. G. M. Leon, M. Lischka, and A. Breiter, “Mapping the Global South: Equal-Area Projections for Choropleth Maps,” Proceedings - 2020 IEEE Visualization Conference, VIS 2020, pp. 91–95, 2020.
  34. F. C. Kessler, S. E. Battersby, M. P. Finn, and K. C. Clarke, “Map projections and the internet,” in Choosing a Map Projection.   Springer, 2017, pp. 117–148.
  35. B. Šavrič, T. Patterson, and B. Jenny, “The equal earth map projection,” International Journal of Geographical Information Science, vol. 33, no. 3, pp. 454–465, 2019.
  36. B. Šavrič, B. Jenny, T. Patterson, D. Petrovič, and L. Hurni, “A polynomial equation for the natural earth projection,” Cartography and Geographic Information Science, vol. 38, no. 4, pp. 363–372, 2011.
  37. J. P. Snyder, “Equidistant conic map projections,” Annals of the Association of American Geographers, vol. 68, no. 3, pp. 373–383, 1978.
  38. B. Šavrič, B. Jenny, and H. Jenny, “Projection wizard–an online map projection selection tool,” The Cartographic Journal, vol. 53, no. 2, pp. 177–185, 2016.
  39. N. Xiao and M. P. Armstrong, “ChoroWare: A software toolkit for choropleth map classification,” Geographical Analysis, vol. 38, no. 1, pp. 102–121, 2006.
  40. C. A. Brewer and L. Pickle, “Evaluation of methods for classifying epidemiological data on choropleth maps in series,” Annals of the Association of American Geographers, vol. 92, no. 4, pp. 662–681, 2002.
  41. B. Stern, L. Hurni, S. Wiesmann, and Y. Ysakowski, “Statistics for thematic cartography,” Geographic Information Technology Training Alliance–GITTA, 2011.
  42. B. Jiang, “Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution,” The Professional Geographer, vol. 65, no. 3, pp. 482–494, 2013.
  43. G. F. Jenks and F. C. Caspall, “Error on choroplethic maps: definition, measurement, reduction,” Annals of the Association of American Geographers, vol. 61, no. 2, pp. 217–244, 1971.
  44. J. C. Duque, L. Anselin, and S. J. Rey, “The max-p-regions problem,” Journal of Regional Science, vol. 52, no. 3, pp. 397–419, 2012.
  45. C. A. Brewer, A. M. MacEachren, L. W. Pickle, and D. Herrmann, “Mapping mortality: Evaluating color schemes for choropleth maps,” Annals of the Association of American Geographers, vol. 87, no. 3, pp. 411–438, 1997.
  46. F. Declerq, “Choropleth map accuracy and the number of class intervals,” in Proceedings of the 17th Conference and the 10th General Assembly of the International Cartographic Association, vol. 1.   Institute Cartogràfic de Catalunya Barcelona, 1995, pp. 918–22.
  47. M. Hegarty, H. S. Smallman, A. T. Stull, and M. S. Canham, “Naïve cartography: How intuitions about display configuration can hurt performance,” Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 44, no. 3, pp. 171–186, 2009.
  48. P. A. Moran, “Notes on continuous stochastic phenomena,” Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950.
  49. S. J. Rey, L. Anselin, P. Amaral, D. Arribas-Bel, R. X. Cortes, J. D. Gaboardi, W. Kang, E. Knaap, Z. Li, S. Lumnitz et al., “The pysal ecosystem: Philosophy and implementation,” Geographical Analysis, 2021.
  50. L. Anselin. (2020) Contiguity-based spatial weights. [Online]. Available: https://geodacenter.github.io/workbook/4a_contig_weights/lab4a.html#spatial-weights---basic-concepts
  51. L. Anselin, I. Syabri, and Y. Kho, “Geoda: an introduction to spatial data analysis,” in Handbook of applied spatial analysis: Software tools, methods and applications.   Springer, 2009, pp. 73–89.
  52. V. Satopaa, J. R. Albrecht, D. E. Irwin, and B. Raghavan, “Finding a ”kneedle” in a haystack: Detecting knee points in system behavior,” 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171, 2011.
  53. C. Tominski, G. Fuchs, and H. Schumann, “Task-driven color coding,” in 2008 12th International Conference Information Visualisation.   IEEE, 2008, pp. 373–380.
  54. M. Stone, D. A. Szafir, and V. Setlur, “An engineering model for color difference as a function of size,” in Color and Imaging Conference, vol. 2014.   Society for Imaging Science and Technology, 2014, pp. 253–258.
  55. J. P. Snyder, “Map projections used by the us geological survey,” US Government Printing Office, Tech. Rep., 1982.
  56. M. Bostock, V. Ogievetsky, and J. Heer, “D33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT data-driven documents,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301–2309, 2011.
  57. H. Kang, C. Plaisant, and B. Shneiderman, “Helping users get started with visual interfaces: multi-layered interfaces, integrated initial guidance and video demonstrations,” in Proceedings of the 2003 Annual National Conference on Digital Government Research, 2003, pp. 1–1.
Citations (4)

Summary

We haven't generated a summary for this paper yet.