Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Multi-Agent Deep Reinforcement Learning for Adaptive Decentralized Emergency Voltage Control (2310.13577v1)

Published 20 Oct 2023 in eess.SY and cs.SY

Abstract: Under voltage load shedding (UVLS) for power grid emergency control builds the last defensive perimeter to prevent cascade outages and blackouts in case of contingencies. This letter proposes a novel cooperative multi-agent deep reinforcement learning (MADRL)-based UVLS algorithm in an adaptive decentralized way. With well-designed input signals reflecting the voltage deviation, newly structured neural networks are developed as intelligent agents to obtain control actions and their probabilities to accommodate high uncertainties in volatile power system operations. Moreover, the interaction among the agents for coordinated control is implemented and refined by a state-of-the-art attention mechanism, which helps agents concentratively learn effective interacted information. The proposed method realizes decentralized coordinated control, adapting to extremely high uncertainties. Case studies on an IEEE benchmark system indicate the superior performance of the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.