Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Policy Gradient and Safety-Based Control for Autonomous Driving (2310.13314v1)

Published 20 Oct 2023 in cs.RO

Abstract: With the advancement of data-driven techniques, addressing continuous con-trol challenges has become more efficient. However, the reliance of these methods on historical data introduces the potential for unexpected decisions in novel scenarios. To enhance performance in autonomous driving and collision avoidance, we propose a symbiotic fusion of policy gradient with safety-based control. In this study, we em-ploy the Deep Deterministic Policy Gradient (DDPG) algorithm to enable autono-mous driving in the absence of surrounding vehicles. By training the vehicle's driving policy within a stable and familiar environment, a robust and efficient learning pro-cess is achieved. Subsequently, an artificial potential field approach is utilized to formulate a collision avoidance algorithm, accounting for the presence of surround-ing vehicles. Furthermore, meticulous consideration is given to path tracking meth-ods. The amalgamation of these approaches demonstrates substantial performance across diverse scenarios, underscoring its potential for advancing autonomous driving while upholding safety standards.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xi Xiong (22 papers)
  2. Lu Liu (464 papers)

Summary

We haven't generated a summary for this paper yet.