Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability (2310.13240v2)

Published 20 Oct 2023 in cs.LG and econ.EM

Abstract: Causal machine learning tools are beginning to see use in real-world policy evaluation tasks to flexibly estimate treatment effects. One issue with these methods is that the machine learning models used are generally black boxes, i.e., there is no globally interpretable way to understand how a model makes estimates. This is a clear problem in policy evaluation applications, particularly in government, because it is difficult to understand whether such models are functioning in ways that are fair, based on the correct interpretation of evidence and transparent enough to allow for accountability if things go wrong. However, there has been little discussion of transparency problems in the causal machine learning literature and how these might be overcome. This paper explores why transparency issues are a problem for causal machine learning in public policy evaluation applications and considers ways these problems might be addressed through explainable AI tools and by simplifying models in line with interpretable AI principles. It then applies these ideas to a case-study using a causal forest model to estimate conditional average treatment effects for a hypothetical change in the school leaving age in Australia. It shows that existing tools for understanding black-box predictive models are poorly suited to causal machine learning and that simplifying the model to make it interpretable leads to an unacceptable increase in error (in this application). It concludes that new tools are needed to properly understand causal machine learning models and the algorithms that fit them.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. publisher: National Acad Sciences.
  2. [Online; accessed 2021-08-27]. https://pubs.aeaweb.org/doi/10.1257/jep.31.2.3
  3. arXiv: 2101.00878. http://arxiv.org/abs/2101.00878
  4. [Online; accessed 2023-01-04]. https://onlinelibrary.wiley.com/doi/10.1111/puar.13293
  5. arXiv:2308.03369 [stat]. http://arxiv.org/abs/2308.03369 Cağlayan Akay et al.
  6. Publisher: John Wiley & Sons, Ltd. https://doi.org/10.1111/joes.12452
  7. [Online; accessed 2021-05-13]. https://doi.org/10.1111/ectj.12097
  8. [Online; accessed 2022-08-18]. https://linkinghub.elsevier.com/retrieve/pii/S0304407620303468
  9. publisher: HeinOnline.
  10. arXiv:1912.12864 [econ, q-fin, stat]. http://arxiv.org/abs/1912.12864
  11. [Online; accessed 2022-08-18]. https://www.nature.com/articles/s41598-022-05780-0
  12. number: arXiv:2012.04570 arXiv:2012.04570 [cs, stat]. http://arxiv.org/abs/2012.04570
  13. arXiv:1711.09784 [cs, stat]. http://arxiv.org/abs/1711.09784
  14. Goodman, B. & Flaxman, S. (2017), ‘European Union Regulations on Algorithmic Decision Making and a “Right to Explanation”’, AI Magazine 38(3), 50–57. Publisher: John Wiley & Sons, Ltd. https://doi.org/10.1609/aimag.v38i3.2741
  15. [Online; accessed 2023-01-04]. https://dl.acm.org/doi/10.1145/3287560.3287563
  16. grf-labs (2021), ‘Add support for SHAPR’. https://github.com/grf-labs/grf/issues/986
  17. [Online; accessed 2023-01-31]. https://www.frontiersin.org/articles/10.3389/frai.2022.1015604/full
  18. arXiv:2204.06030 [stat]. http://arxiv.org/abs/2204.06030
  19. publisher: Taylor & Francis.
  20. publisher: University of Pennsylvania Press.
  21. DOI: 10.1017/CBO9781139025751.
  22. [Online; accessed 2023-02-13]. https://www.cambridge.org/core/product/identifier/S1052150X21000038/type/journal_article
  23. [Online; accessed 2023-02-13]. https://link.springer.com/10.1007/s00521-023-08221-9
  24. [Online; accessed 2021-08-30]. http://www.pnas.org/lookup/doi/10.1073/pnas.1804597116
  25. [Online; accessed 2023-01-24]. https://linkinghub.elsevier.com/retrieve/pii/S0272775707000064
  26. Publisher: SAGE Publications Ltd. https://doi.org/10.1177/13563890022209406
  27. publisher: ACM New York, NY, USA.
  28. Logg, J. M. (2022), The psychology of big data: Developing a “theory of machine” to examine perceptions of algorithms., in ‘The psychology of technology: Social science research in the age of Big Data.’, American Psychological Association, Washington, DC, US, pp. 349–378. DOI: 10.1037/0000290-011.
  29. [Online; accessed 2023-01-04]. https://linkinghub.elsevier.com/retrieve/pii/S0749597818303388
  30. arXiv:1705.07874 [cs, stat]. http://arxiv.org/abs/1705.07874
  31. [Online; accessed 2022-12-15]. http://link.springer.com/10.1007/s10676-004-3422-1
  32. [Online; accessed 2022-12-15]. http://journals.sagepub.com/doi/10.1177/2053951716679679
  33. DOI: 10.1093/acprof:oso/9780198800606.001.0001 DOI: 10.1093/acprof:oso/9780198800606.001.0001. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198800606.001.0001/acprof-9780198800606
  34. arXiv:2309.00805 [cs, econ]. http://arxiv.org/abs/2309.00805
  35. arXiv:2401.07075 [econ, q-fin]. http://arxiv.org/abs/2401.07075
  36. [Online; accessed 2022-11-21]. https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/63.3.581
  37. [Online; accessed 2023-01-04]. https://link.springer.com/10.1007/s13347-021-00450-x
  38. [Online; accessed 2021-08-25]. https://doi.org/10.1093/ectj/utaa027
  39. arXiv: 2108.13518. http://arxiv.org/abs/2108.13518
  40. [Online; accessed 2023-02-14]. https://ieeexplore.ieee.org/document/9155614/
  41. [Online; accessed 2022-11-14]. https://joss.theoj.org/papers/10.21105/joss.02232
  42. [Online; accessed 2021-04-26]. https://github.com/grf-labs/grf/issues/281
  43. publisher: Taylor & Francis. https://doi.org/10.1080/01621459.2017.1319839
  44. Series Title: Lecture Notes in Computer Science.
  45. publisher: SAGE Publications Inc. https://doi.org/10.1177/0162243915605575
  46. [Online; accessed 2023-02-14]. http://link.springer.com/10.1007/s12027-020-00602-0
  47. Publisher: SAGE Publications Ltd. https://doi.org/10.1177/20531680231153080
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Patrick Rehill (7 papers)
  2. Nicholas Biddle (4 papers)
Citations (3)