Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Gibbs Posteriors with Applications to Principal Component Analysis (2310.12882v1)

Published 19 Oct 2023 in stat.ME and stat.ML

Abstract: Gibbs posteriors are proportional to a prior distribution multiplied by an exponentiated loss function, with a key tuning parameter weighting information in the loss relative to the prior and providing a control of posterior uncertainty. Gibbs posteriors provide a principled framework for likelihood-free Bayesian inference, but in many situations, including a single tuning parameter inevitably leads to poor uncertainty quantification. In particular, regardless of the value of the parameter, credible regions have far from the nominal frequentist coverage even in large samples. We propose a sequential extension to Gibbs posteriors to address this problem. We prove the proposed sequential posterior exhibits concentration and a Bernstein-von Mises theorem, which holds under easy to verify conditions in Euclidean space and on manifolds. As a byproduct, we obtain the first Bernstein-von Mises theorem for traditional likelihood-based Bayesian posteriors on manifolds. All methods are illustrated with an application to principal component analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.