Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theoretical Approach to Characterize the Accuracy-Fairness Trade-off Pareto Frontier (2310.12785v1)

Published 19 Oct 2023 in cs.LG and cs.CY

Abstract: While the accuracy-fairness trade-off has been frequently observed in the literature of fair machine learning, rigorous theoretical analyses have been scarce. To demystify this long-standing challenge, this work seeks to develop a theoretical framework by characterizing the shape of the accuracy-fairness trade-off Pareto frontier (FairFrontier), determined by a set of all optimal Pareto classifiers that no other classifiers can dominate. Specifically, we first demonstrate the existence of the trade-off in real-world scenarios and then propose four potential categories to characterize the important properties of the accuracy-fairness Pareto frontier. For each category, we identify the necessary conditions that lead to corresponding trade-offs. Experimental results on synthetic data suggest insightful findings of the proposed framework: (1) When sensitive attributes can be fully interpreted by non-sensitive attributes, FairFrontier is mostly continuous. (2) Accuracy can suffer a \textit{sharp} decline when over-pursuing fairness. (3) Eliminate the trade-off via a two-step streamlined approach. The proposed research enables an in-depth understanding of the accuracy-fairness trade-off, pushing current fair machine-learning research to a new frontier.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hua Tang (6 papers)
  2. Lu Cheng (73 papers)
  3. Ninghao Liu (98 papers)
  4. Mengnan Du (90 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.