2000 character limit reached
4-Cycle Free Spatially Coupled LDPC Codes with an Explicit Construction (2310.12657v1)
Published 19 Oct 2023 in cs.IT and math.IT
Abstract: Spatially coupled low-density parity-check (SC-LDPC) codes are a class of capacity approaching LDPC codes with low message recovery latency when a sliding window decoding is used. In this paper, we first present a new method for the construction of a class of SC-LDPC codes by the incidence matrices of a given non-negative integer matrix $E$, and then the relationship of 4-cycles between matrix $E$ and the corresponding SC-LDPC code are investigated. Finally, by defining a new class of integer finite sequences, called {\it good sequences}, for the first time, we give an explicit method for the construction of a class of 4-cycle free SC-LDPC codes that can achieve (in most cases) the minimum coupling width.
- M. Gholami, and M. Alinia, “High‐performance binary and non‐binary Low‐density parity‐check codes based on affine permutation matrices”, IET Communications, vol. 9, no. 17, pp. 2114–2123, 2015.
- M. Karimi, & A. H. Banihashemi, “On characterization of elementary trapping sets of variable-regular LDPC codes”, IEEE transactions on information theory, vol. 60, no. 9, pp.5188–5203, 2014.
- M. Karimi,& A. H. Banihashemi,“On the girth of quasi-cyclic protograph LDPC codes”, IEEE transactions on information theory, vol. 59, no. 7, pp.4542–4552, 2013.
- S. Mo, L. Chen, D. J. Costello, D. G. Mitchell, R. Smarandache & J. Qiu, “Designing protograph-based quasi-cyclic spatially coupled LDPC codes with large girth”, IEEE Transactions on Communications, vol. 68, no. 9, pp. 5326–5337, 2020.
- D. G. Mitchell, M. Lentmaier, & D. J. Costello, “Spatially coupled LDPC codes constructed from protographs”, IEEE Transactions on Information Theory, vol. 61, no. 9, pp.4866–4889, 2015.
- A. E. Pusane, R. Smarandache, P. O. Vontobel,& D. J. Costello, “Deriving good LDPC convolutional codes from LDPC block codes”, IEEE Transactions on Information Theory, vol. 57, no. 2, pp.835–857, 2011.
- M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi, “Design and analysis of time-invariant SC-LDPC convolutional codes with small constraint length,” IEEE Trans. Commun., vol. 33, no. 3, pp. 918–931, Mar. 2018.
- D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. Mitchell, & R. Smarandache, “Spatially coupled sparse codes on graphs: Theory and practice”, IEEE Communications Magazine, vol. 52, no. 7, pp.168–176, 2014.
- D. G. Mitchell, A. E. Pusane, & D. J. Costello, “Minimum distance and trapping set analysis of protograph-based LDPC convolutional codes”, IEEE transactions on information theory, vol. 59, no.1, pp.254–281, 2012.
- D. G. Mitchell, L. Dolecek, & D. J. Costello, “Absorbing set characterization of array-based spatially coupled LDPC codes”, In 2014 IEEE International Symposium on Information Theory, pp.886–890, 2014.
- S. Naseri, & A. Banihashemi, “Spatially coupled LDPC codes with small constraint length and low error floor”, IEEE Comm. Lett., vol. 24, no. 2, pp. 254-258, 2020.
- M. Lentmaier, A. Sridharan, D. J. Costello,& K. S. Zigangirov,“ Iterative decoding threshold analysis for LDPC convolutional codes”.IEEE Transactions on Information Theory, vol.56, no. 10, pp.5274–5289, 2010.
- S. Kudekar, T. J. Richardson,& R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC”. IEEE Transactions on Information Theory, vol. 57, no. 2, pp.803–834, 2011.
- S. Kudekar, T. Richardson,& R. L. Urbanke, “ Spatially coupled ensembles universally achieve capacity under belief propagation”. IEEE Transactions on Information Theory, vol. 59, no. 12, pp.7761–7813, 2013.