Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Semiparametric Regression via Sequential Monte Carlo (2310.12391v2)

Published 19 Oct 2023 in stat.ME

Abstract: We develop and describe online algorithms for performing online semiparametric regression analyses. Earlier work on this topic is in Luts, Broderick & Wand (J. Comput. Graph. Statist., 2014) where online mean field variational Bayes was employed. In this article we instead develop sequential Monte Carlo approaches to circumvent well-known inaccuracies inherent in variational approaches. Even though sequential Monte Carlo is not as fast as online mean field variational Bayes, it can be a viable alternative for applications where the data rate is not overly high. For Gaussian response semiparametric regression models our new algorithms share the online mean field variational Bayes property of only requiring updating and storage of sufficient statistics quantities of streaming data. In the non-Gaussian case accurate real-time semiparametric regression requires the full data to be kept in storage. The new algorithms allow for new options concerning accuracy/speed trade-offs for online semiparametric regression.

Summary

We haven't generated a summary for this paper yet.