Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Optimise Climate Sensor Placement using a Transformer (2310.12387v2)

Published 18 Oct 2023 in cs.LG and cs.AI

Abstract: The optimal placement of sensors for environmental monitoring and disaster management is a challenging problem due to its NP-hard nature. Traditional methods for sensor placement involve exact, approximation, or heuristic approaches, with the latter being the most widely used. However, heuristic methods are limited by expert intuition and experience. Deep learning (DL) has emerged as a promising approach for generating heuristic algorithms automatically. In this paper, we introduce a novel sensor placement approach focused on learning improvement heuristics using deep reinforcement learning (RL) methods. Our approach leverages an RL formulation for learning improvement heuristics, driven by an actor-critic algorithm for training the policy network. We compare our method with several state-of-the-art approaches by conducting comprehensive experiments, demonstrating the effectiveness and superiority of our proposed approach in producing high-quality solutions. Our work presents a promising direction for applying advanced DL and RL techniques to challenging climate sensor placement problems.

Summary

We haven't generated a summary for this paper yet.