Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cold-atom quantum simulators of gauge theories (2310.12201v1)

Published 18 Oct 2023 in cond-mat.quant-gas, cond-mat.stat-mech, cond-mat.str-el, hep-lat, and quant-ph

Abstract: Gauge theories represent a fundamental framework underlying modern physics, constituting the basis of the Standard Model and also providing useful descriptions of various phenomena in condensed matter. Realizing gauge theories on accessible and tunable tabletop quantum devices offers the possibility to study their dynamics from first principles time evolution and to probe their exotic physics, including that generated by deviations from gauge invariance, which is not possible, e.g., in dedicated particle colliders. Not only do cold-atom quantum simulators hold the potential to provide new insights into outstanding high-energy and nuclear-physics questions, they also provide a versatile tool for the exploration of topological phases and ergodicity-breaking mechanisms relevant to low-energy many-body physics. In recent years, cold-atom quantum simulators have demonstrated impressive progress in the large-scale implementation of $1+1$D Abelian gauge theories. In this Review, we chronicle the progress of cold-atom quantum simulators of gauge theories, highlighting the crucial advancements achieved along the way in order to reliably stabilize gauge invariance and go from building blocks to large-scale realizations where \textit{bona fide} gauge-theory phenomena can be probed. We also provide a brief outlook on where this field is heading, and what is required experimentally and theoretically to bring the technology to the next level by surveying various concrete proposals for advancing these setups to higher spatial dimensions, higher-spin representations of the gauge field, and non-Abelian gauge groups.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University Press, 1995).
  2. U.-J. Wiese, Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Annalen der Physik 525, 777 (2013a).
  3. M. Dalmonte and S. Montangero, Lattice gauge theories simulations in the quantum information era, Contemp. Phys. 57, 388 (2016a).
  4. E. Zohar, I. Cirac, and B. Reznik, Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices, Rep. Prog. Phys. 79, 014401 (2016).
  5. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nat. Phys. 11, 124 (2015).
  6. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  7. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  8. J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
  9. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C. R. Phys. 19, 498 (2018).
  10. R. Orús, Tensor networks for complex quantum systems, Nat. Rev. Phys. 1, 538 (2019).
  11. M. Dalmonte and S. Montangero, Lattice gauge theory simulations in the quantum information era, Contemporary Physics 57, 388 (2016b), https://doi.org/10.1080/00107514.2016.1151199 .
  12. L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010).
  13. L. Savary and L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80, 016502 (2016).
  14. X.-G. Wen and P. A. Lee, Theory of underdoped cuprates, Phys. Rev. Lett. 76, 503 (1996).
  15. T. Senthil and M. P. A. Fisher, Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory of electron fractionalization in strongly correlated systems, Phys. Rev. B 62, 7850 (2000).
  16. A. Auerbach, Interacting Electrons and Quantum Magnetism, Graduate Texts in Contemporary Physics (Springer New York, 1998).
  17. E. Huffman, M. G. Vera, and D. Banerjee, Toward the real-time evolution of gauge-invariant z2 and u(1) quantum link models on noisy intermediate-scale quantum hardware with error mitigation, Phys. Rev. D 106, 094502 (2022).
  18. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  19. E. Zohar, Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods, Philos. Trans. Royal Soc. A 380, 20210069 (2022), arXiv:2106.04609 [quant-ph] .
  20. H. Rothe, Lattice Gauge Theories: An Introduction, EBSCO ebook academic collection (World Scientific, 2005).
  21. K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).
  22. C. Ratti, Lattice qcd and heavy ion collisions: a review of recent progress, Rep. Prog. Phys. 81, 084301 (2018).
  23. S. Chandrasekharan and U.-J. Wiese, Quantum link models: A discrete approach to gauge theories, Nucl. Phys. B. 492, 455 (1997).
  24. U.-J. Wiese, Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Annalen der Physik 525, 777 (2013b).
  25. S. Coleman, More about the massive schwinger model, Ann. Phys. 101, 239 (1976).
  26. M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems (OUP Oxford, 2012).
  27. D. Jaksch and P. Zoller, The cold atom hubbard toolbox, Ann. Phys. 315, 52 (2005).
  28. C. Gross and W. S. Bakr, Quantum gas microscopy for single atom and spin detection, Nat. Phys. 17, 1316 (2021).
  29. D. C. McKay and B. DeMarco, Cooling in strongly correlated optical lattices: prospects and challenges, Rep. Prog. Phys. 74, 054401 (2011).
  30. T.-L. Ho and Q. Zhou, Universal cooling scheme for quantum simulation, arXiv preprint arXiv:0911.5506  (2009).
  31. A. Kantian, S. Langer, and A. J. Daley, Dynamical disentangling and cooling of atoms in bilayer optical lattices, Phys. Rev. Lett. 120, 060401 (2018).
  32. J. I. Cirac, P. Maraner, and J. K. Pachos, Cold atom simulation of interacting relativistic quantum field theories, Phys. Rev. Lett. 105, 190403 (2010).
  33. E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2+1212+12 + 1)-dimensional lattice qed with dynamical matter using ultracold atoms, Phys. Rev. Lett. 110, 055302 (2013a).
  34. K. D. Nelson, X. Li, and D. S. Weiss, Imaging single atoms in a three-dimensional array, Nat. Phys. 3, 556 (2007).
  35. Y. Takahashi, Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice, Proceedings of the Japan Academy, Series B 98, 141 (2022).
  36. M. A. Cazalilla and A. M. Rey, Ultracold Fermi gases with emergent SU(N) symmetry, Rep. Prog. Phys. 77, 124401 (2014), publisher: IOP Publishing.
  37. S. Doniach, The Kondo lattice and weak antiferromagnetism, Physica B+C 91, 231 (1977).
  38. M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99 (1954).
  39. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
  40. A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
  41. C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B: At. Mol. Opt. Phys. 53, 012002 (2019).
  42. D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: the hofstadter butterfly for cold neutral atoms, New J. Phys. 5, 56 (2003).
  43. A. Bermudez and D. Porras, Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields, New J. Phys. 17, 103021 (2015).
  44. J. Kogut and L. Susskind, Hamiltonian formulation of wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).
  45. A. H. MacDonald, S. M. Girvin, and D. Yoshioka, tU𝑡𝑈\frac{t}{U}divide start_ARG italic_t end_ARG start_ARG italic_U end_ARG expansion for the hubbard model, Phys. Rev. B 37, 9753 (1988).
  46. B. Paredes and I. Bloch, Minimum instances of topological matter in an optical plaquette, Phys. Rev. A 77, 023603 (2008).
  47. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
  48. N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat Phys 12, 639 (2016).
  49. M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore photons: The u⁢(1)𝑢1u(1)italic_u ( 1 ) spin liquid in a s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004).
  50. R. Moessner and S. L. Sondhi, Resonating valence bond phase in the triangular lattice quantum dimer model, Phys. Rev. Lett. 86, 1881 (2001).
  51. L. Balents, M. P. A. Fisher, and S. M. Girvin, Fractionalization in an easy-axis kagome antiferromagnet, Phys. Rev. B 65, 224412 (2002).
  52. E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of gauge theories with ultracold atoms: Local gauge invariance from angular-momentum conservation, Phys. Rev. A 88, 023617 (2013b).
  53. G. Valentí-Rojas, N. Westerberg, and P. Öhberg, Synthetic flux attachment, Phys. Rev. Res. 2, 033453 (2020).
  54. P. Fendley, K. Sengupta, and S. Sachdev, Competing density-wave orders in a one-dimensional hard-boson model, Phys. Rev. B 69, 075106 (2004).
  55. J. C. Halimeh and P. Hauke, Reliability of lattice gauge theories, Phys. Rev. Lett. 125, 030503 (2020).
  56. W. Lechner, P. Hauke, and P. Zoller, A quantum annealing architecture with all-to-all connectivity from local interactions, Science Advances 1, e1500838 (2015).
Citations (32)

Summary

We haven't generated a summary for this paper yet.