Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Distributionally Robust Mitigation of Risk of Cascading Failures (2310.12021v1)

Published 18 Oct 2023 in math.OC, cs.SY, and eess.SY

Abstract: We introduce a novel data-driven method to mitigate the risk of cascading failures in delayed discrete-time Linear Time-Invariant (LTI) systems. Our approach involves formulating a distributionally robust finite-horizon optimal control problem, where the objective is to minimize a given performance function while satisfying a set of distributionally chances constraints on cascading failures, which accounts for the impact of a known sequence of failures that can be characterized using nested sets. The optimal control problem becomes challenging as the risk of cascading failures and input time-delay poses limitations on the set of feasible control inputs. However, by solving the convex formulation of the distributionally robust model predictive control (DRMPC) problem, the proposed approach is able to keep the system from cascading failures while maintaining the system's performance with delayed control input, which has important implications for designing and operating complex engineering systems, where cascading failures can severely affect system performance, safety, and reliability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.