Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Treating Model Uncertainty in the Asset Liability Management Problem (2310.11987v1)

Published 18 Oct 2023 in q-fin.PM

Abstract: The problem of asset liability management (ALM) is a classic problem of the financial mathematics and of great interest for the banking institutions and insurance companies. Several formulations of this problem under various model settings have been studied under the Mean-Variance (MV) principle perspective. In this paper, the ALM problem is revisited under the context of model uncertainty in the one-stage framework. In practice, uncertainty issues appear to several aspects of the problem, e.g. liability process characteristics, market conditions, inflation rates, inside information effects, etc. A framework relying on the notion of the Wasserstein barycenter is presented which is able to treat robustly this type of ambiguities by appropriate handling the various information sources (models) and appropriately reformulating the relevant decision making problem. The proposed framework can be applied to a number of different model settings leading to the selection of investment portfolios that remain robust to the various uncertainties appearing in the market. The paper is concluded with a numerical experiment for a static version of the ALM problem, employing standard modelling approaches, illustrating the capabilities of the proposed method with very satisfactory results in retrieving the true optimal strategy even in high noise cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.