Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic shape optimization using energy stable curvilinear finite differences (2310.11956v2)

Published 18 Oct 2023 in math.NA and cs.NA

Abstract: A gradient-based method for shape optimization problems constrained by the acoustic wave equation is presented. The method makes use of high-order accurate finite differences with summation-by-parts properties on multiblock curvilinear grids to discretize in space. Representing the design domain through a coordinate mapping from a reference domain, the design shape is obtained by inverting for the discretized coordinate map. The adjoint state framework is employed to efficiently compute the gradient of the loss functional. Using the summation-by-parts properties of the finite difference discretization, we prove stability and dual consistency for the semi-discrete forward and adjoint problems. Numerical experiments verify the accuracy of the finite difference scheme and demonstrate the capabilities of the shape optimization method on two model problems with real-world relevance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. doi:10.1007/978-3-540-72153-6_4.
  2. doi:10.1007/978-1-4612-1780-0_10.
  3. doi:https://doi.org/10.1002/nme.1620200610.
  4. doi:10.1137/S0036144598349423.
  5. doi:10.1137/100790987.
  6. doi:10.1016/j.jcp.2012.06.032.
  7. doi:10.1137/1.9780898719826.
  8. doi:10.1016/0045-7825(94)90135-X.
  9. doi:10.1002/nme.5621.
  10. doi:10.3402/tellusa.v24i3.10634.
  11. doi:10.1016/b978-0-12-208350-1.50012-1.
  12. doi:10.1016/j.jcp.2014.02.031.
  13. doi:10.1016/j.compfluid.2014.02.016.
  14. doi:10.1007/s10915-009-9305-1.
  15. doi:10.1007/s10915-011-9525-z.
  16. doi:10.1016/j.jcp.2023.112376.
  17. doi:10.1016/j.jcp.2020.109294.
  18. doi:10.1016/j.jcp.2006.05.007.
  19. doi:10.1007/s10915-023-02218-1.
  20. doi:10.1137/18M1211465.
  21. doi:10.1190/geo2022-0195.1.
  22. doi:10.2514/1.44033.
  23. doi:https://doi.org/10.1016/j.proci.2022.06.021.
  24. doi:10.1002/mma.8030.
  25. doi:10.2307/2005997.
  26. doi:10.1007/s10915-014-9830-4.
  27. doi:10.1137/18M1191609.
  28. doi:10.1016/j.jcp.2020.109386.
  29. doi:10.1016/j.jcp.2019.02.007.
  30. doi:https://doi.org/10.1016/0096-3003(82)90190-4.
  31. doi:10.1006/jcph.1994.1005.
  32. doi:10.1016/j.jcp.2016.05.060.
  33. doi:10.1016/j.jcp.2008.06.023.
  34. doi:10.1007/s10915-018-0723-9.
  35. doi:10.1016/j.jcp.2023.111907.
  36. doi:10.1007/s10915-016-0165-1.
  37. doi:10.2307/2153482.
  38. doi:10.2307/2153366.
  39. doi:10.1016/j.jcp.2020.109842.
  40. doi:10.1007/s10915-013-9760-6.
  41. doi:10.1190/1.1442188.
  42. doi:10.1016/j.jcp.2013.08.014.
  43. doi:10.1137/151002769.
  44. doi:10.1137/15M103861X.
  45. doi:10.1093/imamat/6.1.76.
  46. doi:https://doi.org/10.1016/S0045-7825(02)00656-4.
  47. doi:10.1088/0264-9381/27/8/084020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.