Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do We Run Large-scale Multi-Robot Systems on the Edge? More Evidence for Two-Phase Performance in System Size Scaling (2310.11843v2)

Published 18 Oct 2023 in cs.RO and cs.MA

Abstract: With increasing numbers of mobile robots arriving in real-world applications, more robots coexist in the same space, interact, and possibly collaborate. Methods to provide such systems with system size scalability are known, for example, from swarm robotics. Example strategies are self-organizing behavior, a strict decentralized approach, and limiting the robot-robot communication. Despite applying such strategies, any multi-robot system breaks above a certain critical system size (i.e., number of robots) as too many robots share a resource (e.g., space, communication channel). We provide additional evidence based on simulations, that at these critical system sizes, the system performance separates into two phases: nearly optimal and minimal performance. We speculate that in real-world applications that are configured for optimal system size, the supposedly high-performing system may actually live on borrowed time as it is on a transient to breakdown. We provide two modeling options (based on queueing theory and a population model) that may help to support this reasoning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson, B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and R. Wood, “The grand challenges of Science Robotics,” Science Robotics, vol. 3, no. 14, p. eaar7650, 2018.
  2. M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future [point of view],” Proceedings of the IEEE, vol. 109, no. 7, pp. 1152–1165, 2021.
  3. H. Hamann and A. Reina, “Scalability in computing and robotics,” IEEE Transactions on Computers, vol. 71, no. 6, pp. 1453–1465, 2022.
  4. I. Rahwan, M. Cebrian, N. Obradovich, et al., “Machine behaviour,” Nature, vol. 568, p. 477–486, 2019.
  5. Q. Lu, G. Fricke, J. Ericksen, and M. Moses, “Swarm foraging review: Closing the gap between proof and practice,” Current Robotics Reports, vol. 1, pp. 215–225, 2020.
  6. H. Kwa, J. Philippot, and R. Bouffanais, “Effect of swarm density on collective tracking performance,” Swarm Intelligence, vol. 17, p. 253–281, 2023.
  7. E. R. Hunt, S. Jones, and S. Hauert, “Testing the limits of pheromone stigmergy in high-density robot swarms,” Royal Society Open Science, vol. 6, p. 190225, 2023.
  8. Y. Khaluf, C. Pinciroli, G. Valentini, and H. Hamann, “The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability,” Swarm Intelligence, vol. 11, no. 2, pp. 155–179, Jun 2017. [Online]. Available: https://doi.org/10.1007/s11721-017-0137-6
  9. A. Rosenfeld, G. A. Kaminka, and S. Kraus, “A study of marginal performance properties in robotic groups,” in Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 3, ser. AAMAS ’04.   USA: IEEE Computer Society, 2004, p. 1536–1537.
  10. J. Ward and R. T. Compton, “High throughput slotted ALOHA packet radio networks with adaptive arrays,” IEEE Transactions on Communications, vol. 41, no. 3, pp. 460–470, 1993.
  11. D. Mateo, Y. Kuan, and R. Bouffanais, “Effect of correlations in swarms on collective response,” Scientific Reports, vol. 7, p. 10388, 2020.
  12. H. Hamann, “Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance,” Swarm Intelligence, vol. 7, no. 2-3, pp. 145–172, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11721-013-0080-0
  13. S. Mayya, P. Pierpaoli, and M. Egerstedt, “Voluntary retreat for decentralized interference reduction in robot swarms,” in International Conference on Robotics and Automation.   IEEE, 2019, pp. 9667–9673.
  14. M. Wahby, J. Petzold, C. Eschke, T. Schmickl, and H. Hamann, “Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms,” Artificial Life Conference Proceedings, no. 31, pp. 642–649, 2019.
  15. O. Zedadra, N. Jouandeau, H. Seridi, and G. Fortino, “Multi-agent foraging: state-of-the-art and research challenges,” Complex Adaptive Systems Modeling, vol. 5, no. 1, pp. 1–24, 2017.
  16. A. Vardy, “The lasso method for multi-robot foraging,” in 19th Conference on Robots and Vision (CRV), 2022, pp. 106–113.
  17. D. Braess, “Über ein Paradoxon aus der Verkehrsplanung,” Unternehmensforschung, vol. 12, pp. 258–268, 1968.
Citations (2)

Summary

We haven't generated a summary for this paper yet.