Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GMC-Pos: Graph-Based Multi-Robot Coverage Positioning Method (2310.11805v1)

Published 18 Oct 2023 in cs.RO

Abstract: Nowadays, several real-world tasks require adequate environment coverage for maintaining communication between multiple robots, for example, target search tasks, environmental monitoring, and post-disaster rescues. In this study, we look into a situation where there are a human operator and multiple robots, and we assume that each human or robot covers a certain range of areas. We want them to maximize their area of coverage collectively. Therefore, in this paper, we propose the Graph-Based Multi-Robot Coverage Positioning Method (GMC-Pos) to find strategic positions for robots that maximize the area coverage. Our novel approach consists of two main modules: graph generation and node selection. Firstly, graph generation represents the environment using a weighted connected graph. Then, we present a novel generalized graph-based distance and utilize it together with the graph degrees to be the conditions for node selection in a recursive manner. Our method is deployed in three environments with different settings. The results show that it outperforms the benchmark method by 15.13% to 24.88% regarding the area coverage percentage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker, T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision,” IEEE Access, vol. 8, pp. 191 617–191 643, 2020.
  2. F. Amigoni, J. Banfi, and N. Basilico, “Multirobot exploration of communication-restricted environments: A survey,” IEEE Intell. Syst., vol. 32, no. 6, pp. 48–57, nov 2017.
  3. M. Meghjani and G. Dudek, “Multi-robot exploration and rendezvous on graphs,” in 2012 IEEE/RSJ Int. Conf. Intell. Robots Syst., oct 2012.
  4. M. Andries and F. Charpillet, “Multi-robot exploration of unknown environments with identification of exploration completion and post-exploration rendezvous using ant algorithms,” in 2013 IEEE/RSJ Int. Conf. Intell. Robots Syst., nov 2013.
  5. S. Izumi, S.-I. Azuma, and T. Sugie, “Multi-robot control inspired by bacterial chemotaxis: Coverage and rendezvous via networking of chemotaxis controllers,” IEEE Access, vol. 8, pp. 124 172–124 184, 2020.
  6. Z. Feng, C. Sun, and G. Hu, “Robust connectivity preserving rendezvous of multirobot systems under unknown dynamics and disturbances,” IEEE Trans. Control. Netw. Syst., vol. 4, no. 4, pp. 725–735, dec 2017.
  7. L. Bramblett, R. Peddi, and N. Bezzo, “Coordinated multi-agent exploration, rendezvous, & task allocation in unknown environments with limited connectivity,” in 2022 IEEE/RSJ Int. Conf. Intell. Robots Syst., oct 2022.
  8. Y. Gao, Y. Wang, X. Zhong, T. Yang, M. Wang, Z. Xu, Y. Wang, Y. Lin, C. Xu, and F. Gao, “Meeting-merging-mission: A multi-robot coordinate framework for large-scale communication-limited exploration,” in 2022 IEEE/RSJ Int. Conf. Intell. Robots Syst., oct 2022.
  9. Q. Wang, M. Langerwisch, and B. Wagner, “Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams,” in IFAC Proc. Vol., vol. 46, no. 29, 2013, pp. 107–112.
  10. J. woo Han, S. Jeon, and H.-J. Kwon, “A new global path planning strategy for mobile robots using hierarchical topology map and safety-aware navigation speed,” in 2019 IEEE/ASME Int. Conf. Adv. Intell. Mechatron., jul 2019.
  11. B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, “Mobile robot path planning in dynamic environment using voronoi diagram and computation geometry technique,” IEEE Access, vol. 7, pp. 86 026–86 040, 2019.
  12. W. Chi, J. Wang, Z. Ding, G. Chen, and L. Sun, “A reusable generalized voronoi diagram-based feature tree for fast robot motion planning in trapped environments,” IEEE Sens. J., vol. 22, no. 18, pp. 17 615–17 624, sep 2022.
  13. S. Lee, “An efficient coverage area re-assignment strategy for multi-robot long-term surveillance,” IEEE Access, vol. 11, pp. 33 757–33 767, 2023.
  14. Z. Liu, H. Liu, Z. Lu, and Q. Zeng, “A dynamic fusion pathfinding algorithm using delaunay triangulation and improved a-star for mobile robots,” IEEE Access, vol. 9, pp. 20 602–20 621, 2021.
  15. K. Masaba and A. Q. Li, “GVGExp: Communication-constrained multi-robot exploration system based on generalized voronoi graphs,” in 2021 Int. Symp. Multi Robot Multi Agent Syst., nov 2021.
  16. Q. Wang, X. Chen, Z. Ullah, S. Tang, M. Yu, and P. Xu, “Tmbc: Topological map based coverage path planner for active exploration of an unknown environment,” in 2022 IEEE Int. Conf. Robot. Biomim., 2022, pp. 1623–1628.
  17. D. Portugal and R. P. Rocha, “Msp algorithm: multi-robot patrolling based on territory allocation using balanced graph partitioning,” in Proc. ACM Symp. Appl. Comput., 2010.
  18. S. Zhang, W. Huang, and H. Zhu, “Uav life detection and rescue using group role assignment,” in 2022 IEEE Int. Conf. Syst. Man Cybern., 2022, pp. 742–747.
  19. M. Malmir, S. Boluki, and S. S. Ghidary, “Offensive positioning based on maximum weighted bipartite matching and voronoi diagram,” in RoboCup 2014: Robot World Cup XVIII.   Springer International Publishing, 2015, pp. 562–570.
  20. A. J. R. Neves, F. Amaral, R. Dias, J. Silva, and N. Lau, “A new approach for dynamic strategic positioning in RoboCup middle-size league,” in Prog. Artif. Intell.   Springer International Publishing, 2015, pp. 433–444.
  21. N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rekleitis, “Efficient multi-robot coverage of a known environment,” in 2017 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1846–1852.
  22. R. Church and C. ReVelle, “The maximal covering location problem,” Pap. Reg. Sci., vol. 32, no. 1, p. 101–118, 1974.
  23. A. Pan, “The applications of maximal covering model in typhoon emergency shelter location problem,” in 2010 IEEE Int. Conf. Ind. Eng. Eng. Manage., 2010, pp. 1727–1731.
  24. A. Takači, M. Marić, and D. Drakulić, “The role of fuzzy sets in improving maximal covering location problem (MCLP),” in 2012 IEEE Int. Symp. Intell. Syst. Inform., 2012, pp. 103–106.
  25. C. Porras, J. Fajardo, A. Rosete, and A. D. Masegosa, “Partial evaluation and efficient discarding for the maximal covering location problem,” IEEE Access, vol. 9, pp. 20 542–20 556, 2021.
  26. U. Feige, “A threshold of ln n for approximating set cover,” J. ACM, vol. 45, no. 4, p. 634–652, jul 1998.
  27. B. Binder, “Spatio-temporal prioritized planning,” Master’s thesis, TU Wien, 2017.
  28. B. Binder, F. Beck, F. Konig, and M. Bader, “Multi robot route planning (MRRP): Extended spatial-temporal prioritized planning,” in 2019 IEEE/RSJ Int. Conf. Intell. Robots Syst., nov 2019.
  29. A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function using networkx,” in Proc. Python Sci. Conf., Pasadena, CA USA, 2008, pp. 11–15.
  30. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

Summary

We haven't generated a summary for this paper yet.