Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Panoptic Out-of-Distribution Segmentation (2310.11797v1)

Published 18 Oct 2023 in cs.CV

Abstract: Deep learning has led to remarkable strides in scene understanding with panoptic segmentation emerging as a key holistic scene interpretation task. However, the performance of panoptic segmentation is severely impacted in the presence of out-of-distribution (OOD) objects i.e. categories of objects that deviate from the training distribution. To overcome this limitation, we propose Panoptic Out-of Distribution Segmentation for joint pixel-level semantic in-distribution and out-of-distribution classification with instance prediction. We extend two established panoptic segmentation benchmarks, Cityscapes and BDD100K, with out-of-distribution instance segmentation annotations, propose suitable evaluation metrics, and present multiple strong baselines. Importantly, we propose the novel PoDS architecture with a shared backbone, an OOD contextual module for learning global and local OOD object cues, and dual symmetrical decoders with task-specific heads that employ our alignment-mismatch strategy for better OOD generalization. Combined with our data augmentation strategy, this approach facilitates progressive learning of out-of-distribution objects while maintaining in-distribution performance. We perform extensive evaluations that demonstrate that our proposed PoDS network effectively addresses the main challenges and substantially outperforms the baselines. We make the dataset, code, and trained models publicly available at http://pods.cs.uni-freiburg.de.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “Continual slam: Beyond lifelong simultaneous localization and mapping through continual learning,” in The Int. Symposium of Robotics Research, 2022, pp. 19–35.
  2. N. Gosala, K. Petek, P. L. Drews-Jr, W. Burgard, and A. Valada, “Skyeye: Self-supervised bird’s-eye-view semantic mapping using monocular frontal view images,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2023, pp. 14 901–14 910.
  3. A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2019, pp. 9404–9413.
  4. D. Bozhinoski, D. Di Ruscio, I. Malavolta, P. Pelliccione, and I. Crnkovic, “Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective,” Journal of Systems and Software, vol. 151, pp. 150–179, 2019.
  5. J. Hwang, S. W. Oh, J.-Y. Lee, and B. Han, “Exemplar-based open-set panoptic segmentation network,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2021, pp. 1175–1184.
  6. R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmentation,” Int. Journal of Computer Vision, vol. 129, no. 5, pp. 1551–1579, 2021.
  7. A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2019, pp. 6399–6408.
  8. B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen, “Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2020.
  9. J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox, “Box2pix: Single-shot instance segmentation by assigning pixels to object boxes,” in IEEE Intelligent Vehicles Symposium, 2018, pp. 292–299.
  10. R. Mohan and A. Valada, “Perceiving the invisible: Proposal-free amodal panoptic segmentation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9302–9309, 2022.
  11. ——, “Amodal panoptic segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2022, pp. 21 023–21 032.
  12. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.
  13. D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D. Song, “Scaling out-of-distribution detection for real-world settings,” arXiv preprint arXiv:1911.11132, 2019.
  14. A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” Advances in Neural Information Processing Systems, vol. 30, 2017.
  15. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in Int. Conf. on Machine Learning, 2016, pp. 1050–1059.
  16. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  17. H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena, “Fishyscapes: A benchmark for safe semantic segmentation in autonomous driving,” in Proc. of the IEEE/CVF Int. Conf. on Computer Vision Workshops, 2019.
  18. R. Chan, M. Rottmann, and H. Gottschalk, “Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2021, pp. 5128–5137.
  19. Y. Xia, Y. Zhang, F. Liu, W. Shen, and A. L. Yuille, “Synthesize then compare: Detecting failures and anomalies for semantic segmentation,” in Europ. Conf. on Computer Vision, 2020, pp. 145–161.
  20. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.
  21. V. Besnier, A. Bursuc, D. Picard, and A. Briot, “Triggering failures: Out-of-distribution detection by learning from local adversarial attacks in semantic segmentation,” in Int. Conf. on Computer Vision, 2021, pp. 15 701–15 710.
  22. H.-M. Xu, H. Chen, L. Liu, and Y. Yin, “Dual decision improves open-set panoptic segmentation,” in British Mac. Vision Conf., 2022.
  23. A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large vocabulary instance segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2019, pp. 5356–5364.
  24. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
  25. F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2020, pp. 2636–2645.
  26. J. Xu, Y. Pan, X. Pan, S. Hoi, Z. Yi, and Z. Xu, “Regnet: self-regulated network for image classification,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  27. X. Wang, Z. Yu, S. De Mello, J. Kautz, A. Anandkumar, C. Shen, and J. M. Alvarez, “Freesolo: Learning to segment objects without annotations,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2022, pp. 14 176–14 186.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com