Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaVis: Adaptive and Explainable Visualization Recommendation for Tabular Data (2310.11742v1)

Published 18 Oct 2023 in cs.HC

Abstract: Automated visualization recommendation facilitates the rapid creation of effective visualizations, which is especially beneficial for users with limited time and limited knowledge of data visualization. There is an increasing trend in leveraging ML techniques to achieve an end-to-end visualization recommendation. However, existing ML-based approaches implicitly assume that there is only one appropriate visualization for a specific dataset, which is often not true for real applications. Also, they often work like a black box, and are difficult for users to understand the reasons for recommending specific visualizations. To fill the research gap, we propose AdaVis, an adaptive and explainable approach to recommend one or multiple appropriate visualizations for a tabular dataset. It leverages a box embedding-based knowledge graph to well model the possible one-to-many mapping relations among different entities (i.e., data features, dataset columns, datasets, and visualization choices). The embeddings of the entities and relations can be learned from dataset-visualization pairs. Also, AdaVis incorporates the attention mechanism into the inference framework. Attention can indicate the relative importance of data features for a dataset and provide fine-grained explainability. Our extensive evaluations through quantitative metric evaluations, case studies, and user interviews demonstrate the effectiveness of AdaVis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. M. Zhou, Q. Li, Y. Li, S. Han, and D. Zhang, “Table2charts: Learning shared representations for recommending charts on multi-dimensional data,” pp. 2389–2399, 2020.
  2. Y. Lin, H. Li, A. Wu, Y. Wang, and H. Qu, “Dminer: Dashboard design mining and recommendation,” IEEE Transactions on Visualization and Computer Graphics, 2022.
  3. H. Wickham, “A layered grammar of graphics,” Journal of Computational and Graphical Statistics, vol. 19, no. 1, pp. 3–28, 2010.
  4. A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive vega: A streaming dataflow architecture for declarative interactive visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 659–668, 2015.
  5. M. Bostock, V. Ogievetsky, and J. Heer, “D33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT data-driven documents,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301–2309, 2011.
  6. J. Heer, S. K. Card, and J. A. Landay, “Prefuse: a toolkit for interactive information visualization,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2005, pp. 421–430.
  7. V. Dibia and Ç. Demiralp, “Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks,” IEEE Computer Graphics and Applications, vol. 39, no. 5, pp. 33–46, 2019.
  8. Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu, “Deepdrawing: A deep learning approach to graph drawing,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 676–686, 2019.
  9. K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo, “Vizml: A machine learning approach to visualization recommendation,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
  10. Y. Li, Y. Qi, Y. Shi, Q. Chen, N. Cao, and S. Chen, “Diverse interaction recommendation for public users exploring multi-view visualization using deep learning,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 95–105, 2022.
  11. Z. Zeng, P. Moh, F. Du, J. Hoffswell, T. Y. Lee, S. Malik, E. Koh, and L. Battle, “An evaluation-focused framework for visualization recommendation algorithms,” IEEE Transactions on Visualization and Computer Graphics, vol. PP, pp. 1–1, 2021.
  12. J. D. Mackinlay, “Automating the design of graphical presentations of relational information,” ACM Transactions on Graphics, vol. 5, no. 2, pp. 110–141, 1986.
  13. J. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic presentation for visual analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1137–1144, 2007.
  14. M. Vartak, A. Parameswaran, N. Polyzotis, and S. R. Madden, “Seedb: automatically generating query visualizations,” 2014.
  15. S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang, “A survey on automatic infographics and visualization recommendations,” Visual Informatics, vol. 4, no. 3, pp. 24–40, 2020.
  16. Q. Wang, Z. Chen, Y. Wang, and H. Qu, “A survey on ml4vis: Applying machinelearning advances to data visualization,” IEEE Transactions on Visualization and Computer Graphics, 2021.
  17. A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang, and H. Qu, “Ai4vis: Survey on artificial intelligence approaches for data visualization,” IEEE Transactions on Visualization and Computer Graphics, 2021.
  18. Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu, “Towards automated infographic design: Deep learning-based auto-extraction of extensible timeline,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 917–926, 2019.
  19. H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu, “Kg4vis: A knowledge graph-based approach for visualization recommendation,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 195–205, 2021.
  20. W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Definitions, methods, and applications in interpretable machine learning,” Proceedings of the National Academy of Sciences, vol. 116, no. 44, pp. 22 071–22 080, 2019.
  21. A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” in Proceedings of the 27th Annual Conference on Neural Information Processing Systems 2013, 2013, pp. 2787–2795.
  22. H. Ren, W. Hu, and J. Leskovec, “Query2box: Reasoning over knowledge graphs in vector space using box embeddings,” arXiv preprint arXiv:2002.05969, 2020.
  23. W. Chen and K. Shi, “Multi-scale attention convolutional neural network for time series classification,” Neural Networks, vol. 136, pp. 126–140, 2021.
  24. Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A survey of approaches and applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.
  25. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” Advances in Neural Information Processing Systems, vol. 26, 2013.
  26. Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling relation paths for representation learning of knowledge bases,” arXiv preprint arXiv:1506.00379, 2015.
  27. L. Vilnis, X. Li, S. Murty, and A. McCallum, “Probabilistic embedding of knowledge graphs with box lattice measures,” arXiv preprint arXiv:1805.06627, 2018.
  28. K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager: Exploratory analysis via faceted browsing of visualization recommendations,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 649–658, 2015.
  29. K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual analysis with partial view specifications,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 2648–2659.
  30. Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati, “Foresight: Recommending visual insights,” arXiv preprint arXiv:1707.03877, 2017.
  31. A. Key, B. Howe, D. Perry, and C. Aragon, “Vizdeck: self-organizing dashboards for visual analytics,” in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, 2012, pp. 681–684.
  32. Y. Luo, X. Qin, N. Tang, and G. Li, “Deepeye: Towards automatic data visualization,” in Proceedings of 2018 IEEE 34th International Conference on Data Engineering (ICDE).   IEEE, 2018, pp. 101–112.
  33. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, “Learning to rank using gradient descent,” in Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 89–96.
  34. D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer, “Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 438–448, 2018.
  35. S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  36. M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning on multi-relational data,” in International Conference on Machine Learning, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:1157792
  37. B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations for learning and inference in knowledge bases,” arXiv preprint arXiv:1412.6575, 2014.
  38. Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on hyperplanes,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.
  39. Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan, “Knowledge graph completion: A review,” IEEE Access, vol. 8, pp. 192 435–192 456, 2020.
  40. G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via dynamic mapping matrix,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, 2015, pp. 687–696.
  41. X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao, S. Zhang, X. Xue et al., “A survey of data-driven and knowledge-aware explainable ai,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 29–49, 2020.
  42. X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, “Explainable reasoning over knowledge graphs for recommendation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 5329–5336.
  43. W. Ma, M. Zhang, Y. Cao, W. Jin, C. Wang, Y. Liu, S. Ma, and X. Ren, “Jointly learning explainable rules for recommendation with knowledge graph,” in The World Wide Web Conference, 2019, pp. 1210–1221.
  44. O. Seneviratne, A. K. Das, S. Chari, N. N. Agu, S. M. Rashid, C.-H. Chen, J. P. McCusker, J. A. Hendler, and D. L. McGuinness, “Enabling trust in clinical decision support recommendations through semantics.” in SeWeBMeDa@ ISWC, 2019, pp. 55–67.
  45. M. K. Sarker, N. Xie, D. Doran, M. Raymer, and P. Hitzler, “Explaining trained neural networks with semantic web technologies: First steps,” arXiv preprint arXiv:1710.04324, 2017.
  46. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec, “Embedding logical queries on knowledge graphs,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  47. R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang, “Quickinsights: Quick and automatic discovery of insights from multi-dimensional data,” in Proceedings of the 2019 International Conference on Management of Data, 2019, pp. 317–332.
  48. C. Harris, R. A. Rossi, S. Malik, J. Hoffswell, F. Du, T. Y. Lee, E. Koh, and H. Zhao, “Insight-centric visualization recommendation,” arXiv preprint arXiv:2103.11297, 2021.
  49. Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist, “Datasite: Proactive visual data exploration with computation of insight-based recommendations,” Information Visualization, vol. 18, no. 2, pp. 251–267, 2019.
  50. L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stonebraker, “Beagle: Automated extraction and interpretation of visualizations from the web,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–8.
  51. H. Liu, F. Hussain, C. L. Tan, and M. Dash, “Discretization: An enabling technique,” Data Mining and Knowledge Discovery, vol. 6, no. 4, pp. 393–423, 2002.
  52. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.
  53. J. Yuan, J. Vig, and N. Rajani, “isea: An interactive pipeline for semantic error analysis of nlp models,” in 27th International Conference on Intelligent User Interfaces, 2022, pp. 878–888.
  54. H. Ren and J. Leskovec, “Beta embeddings for multi-hop logical reasoning in knowledge graphs,” Advances in Neural Information Processing Systems, vol. 33, pp. 19 716–19 726, 2020.
  55. Z. Zhang, J. Wang, J. Chen, S. Ji, and F. Wu, “Cone: Cone embeddings for multi-hop reasoning over knowledge graphs,” Advances in Neural Information Processing Systems, vol. 34, pp. 19 172–19 183, 2021.
  56. Z. Hu, V. Gutiérrez-Basulto, Z. Xiang, X. Li, R. Li, and J. Z. Pan, “Type-aware embeddings for multi-hop reasoning over knowledge graphs,” arXiv preprint arXiv:2205.00782, 2022.
  57. S. Raschka, “An overview of general performance metrics of binary classifier systems,” arXiv preprint arXiv:1410.5330, 2014.
  58. G. Wills and L. Wilkinson, “Autovis: automatic visualization,” Information Visualization, vol. 9, no. 1, pp. 47–69, 2010.
  59. J. Seo and B. Shneiderman, “A rank-by-feature framework for interactive exploration of multidimensional data,” Information visualization, vol. 4, no. 2, pp. 96–113, 2005.
  60. B. Saket, A. Endert, and Ç. Demiralp, “Task-based effectiveness of basic visualizations,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 7, pp. 2505–2512, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Songheng Zhang (6 papers)
  2. Haotian Li (72 papers)
  3. Huamin Qu (141 papers)
  4. Yong Wang (498 papers)